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Abstract. In self-organizing maps reconstruction error minimization
and topology preservation have shown to be conflicting goals. For one
dimensional maps this dilemma can be alleviated e.g. by locally adaptive
learning rates. On the other hand, the neural gas algorithm and its topol-
ogy representing extension allow for vector quantization at theoretically
optimal reconstruction error for arbitrary data dimensionality. Thus, it
is possible to modify the neural gas algorithm such as to meet optimality
criteria other than mean square error in an exact way for data dimensions
greater than one.

1. Introduction

Vector quantization aims at representing data distributions by prototypical
data vectors. Once the prototypes are fixed, the data can be addressed and
transmitted by referring to the prototype labels as a code. The quality of a
vector quantizer can be evaluated by the mean error occurring when recon-
structing the data from the code by the receiver. If the code itself is subject
to noise during transmission, neighborhood relations in the code space can be
exploited to partly preserve information of the data as done in topographic
vector quantization.

For self-organizing maps (SOMs) [4] it is known [7] that the ordering process
of the reference vectors interferes with the representation quality of the vector
quantizer. This leads to data representations that are suboptimal with respect
to mean square reconstruction error (MSE). In contrast, the neural gas (NG)
algorithm yields quantizations that approximate minimal-error configurations.
Whereas for SOM analytical results have been obtained essentially only for one
dimensional maps, MSE-optimality has been shown in NG for arbitrary data
dimensionality.

In application to signal processing, control and robotics also optimality
criteria other than MSE turned out to be relevant. In particular, it may be
important to resolve rarely occurring critical states of a controlled system more
detailed than by common statistical vector quantizers, in contrast to frequently
visited states which may not call for refined control. On the other hand, in data
visualization or in representations of positional information an even partition of
the data set into subregions may be desirable. Thus, controlling the resolution
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properties of a vector quantizer or its magnification serves to the algorithm’s
flexibility.

2. Magnification of neural maps

Neural maps project data vectors v € M sampled from a data distribu-
tion P(v) onto a set A of neurons i. The configuration of the map is
denoted by w = {w,»}ie 4, where w; are pointers associated to each neu-
ron. An input vector v is mapped onto best matching neuron s accord-
ing to v — s(v) = argmin;, |[v —w;||. The subset of the input space
R; = {v | s(v) = argmin;c 4 ||v — w;||} forms the receptive field of neuron
i. Neural pointers are adapted according to

Aw; = ehy (la V,W) (V - wz) ) (1)
where interactions among neurons are included via a neighborhood function
ha (i, v, w) = exp (—Da(i — s(v))/A). (2)

D 4 denotes a distance measure in A. The SOM is characterized by a squared
distance of vector indices i and s: D5OM (i — s (v)) = |li — s (V)|[5. 202 is
used instead of A. In the NG algorithm the distance is based on rankings of
distances in the input space: DY (i — s (v)) = k; (v, w) [6].

The definition of the distance measures in the two models gives rise to
learning rules with different properties. The NG adaptation rule follows on
average a potential dynamics. In contrast, for the SOM-algorithm no global
energy function exists. Further, in [6] the convergence rate of the neural gas
has been shown to be faster than that of the SOM.

SOM and NG have different resolution properties. These are specified as
the relation of P(v) and the pointer density p(w) which can be expressed in
many instances as a power law:

P(w)* xp(w). (3)

a is called magnification exponent. In eq. (3) and later on it will be assumed
that either the set of pointers form a continuous manifold or that P(v) is
approximately constant inside each receptive field. For a = d/(d + p) a vector
quantizer minimizes the p-norm distortion error [8]

B, = [ Iwe=vIP PW)dv. @

This includes the maximum error p = oo correspondingto a = 0. Ha =1
then the mutual information between P and p is maximized.

For one dimensional SOMs agson = :3; holds in the limit 1 € ¢ K N [7].
For higher dimensions this result is valid only for separable cases [7], but a
general result is unknown. For very small values of ¢ the magnification rate
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Figure 1: The magnification exponent ang for input spaces of different di-
mension (d =1 (¢0),d =2 (+), d = 3 (O and x)) in dependence on the
neighborhood range X.  The networks consisted of N = 512 neurons, except
for the (x) curve, where N = 4096 neurons have been trained. The horizontal
lines indicate the theoretical values anyg = 1/3, 1/2, 3/5 ford =1, 2, 3, resp.,
which can be obtained analytically in the limit X — 0.

approaches the value a = % [3], as the neighborhood ceases to be effective,

which in turn causes topological defects for d > 1.

For the NG the magnification exponent was shown [6] to obey ang =
d/(d+ 2) at small A. This result is valid for arbitrary data dimensions [6] and
coincides with the figure obtained for optimal Euclidean vector quantizers [8].

It is crucial for further applications to determine the validity of this result
for A larger than zero. For this purpose, we have performed simulations with
network sizes N = 2%, k = 4,...14, input dimensions d = 1,2, 3, and various
forms of the input distribution, cf. Fig. 1. When decreasing A, the optimal
magnification rate is approached closely if A < v, where v depends on d and
on the variation of P{v). Generally, the MSE is minimized by neural gas maps
already at nonzero neighborhood parameters.

3. Magnification control

As suggested in [1] we modify the learning parameter € adaptively and locally.
The learning rate at the winner €4,y is used for all neurons in the current
learning step. The new parameters ¢; = €(w;) are intended to effectively
modify the input density, and are chosen, hence, dependent on P(v) at the
position of the weight vectors w; via

(e:) = eoP (W)™, (5)

where the brackets (...) denote the average in time.
The new parameter m allows to deliberately control the magnification rate
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of the evolving map. When considering the short time average of eq. (1)
(Aw;) =€ / esvyh (1, v, w) (v — w;) P(v) dv, (6)
v

we find that eq. (5) results in a modification of the input space density P(v)
—> const P(v)™*+1. The convergence properties of the original algorithms are
retained when the common learning rate €y decreases algebraically. Following
the derivation of the SOM and NG magnification exponents in 7] and [6], resp.,
we get for the new magnification exponent

ad=a-(m+1), (7)

which allows an explicit control of &' when inserting on the right hand side
the intrinsic exponent of the algorithm ason or ang, resp. For SOM the
application of (7) is restricted to the analytically treatable one dimensional
case [1], but also typical instabilities of high dimensional SOMs would render
such a map to be unstable for some range of the modified learning parameters.
For the NG rule (7) is valid for any data dimension.
Since P(v) is assumed to be unknown, the information already acquired by
the network is used:
P (w;) oc pip (w;) (8)

Here, p; is the probability that 4 is the winner neuron. Using this ansatz,
relation (5) is approzimated by

€ () = €0 (—A*lt—s- (m)) ) 9)

with s being the best-matching neuron for the present stimulus v and At, is
the time difference between the present t-value and the last time when this
neuron has been winner.

4. Numerical results

Here we only report numerical results obtained by the NG algorithm. For the
SOM we refer to [1]. In our simulations we used the eq. (9) to approximate
the relation (5) for €, (t). In addition, we prespecified an upper bound €nay.
The data were chosen with respect to the density function g (z) = sin (7 - ),
and z € [0,1] was equally distributed. The map with N = 50 neurons was
trained for 107 adaptation steps with A decreasing towards one. The two- and
three dimensional data distributions were defined in an analogous way. After
the training procedure the entropy of the map

H=- ﬁ: P (w,) -log (13 (ws)) . (10)
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Figure 2: Plot of the entropy H for maps trained with different magnification
control parametersm (d=1 (¢}, d=2 (+), d =3 (Q)). The arrows indicate
the theoretical values of m (m =2, m =1, m = 2/3, resp.) which mazimize
the entropy of the map.

was determined. H is expected to have a maximum for the o’ = 1, i.e. for
mi=2,my=1,m3 = -g—, cf. eq. (7).

The results are depicted in Fig. 2. For an (@ = 1)-map the maximal entropy
value is given by Hmax(N) = — 3N % -log (%), i.e. in the example we have
Hmax(50) = 3.912. Hence, in the cases of the optimal magnification correctors
the resulted maps approximate the theoretical value H,,, best, whereas for
other m-values the obtained entropies are significantly smaller. The magnifi-

cation rates obtained for d = 1 and d = 2 are presented in Fig. 3.
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Figure 3: Effect of magnification control in the neural gas algorithm (leftd =1,
right d = 2).

5. Discussion

Considering accuracy of the obtained magnification rate, it must be noted that
the exponent is numerically difficult to be determined precisely, due to fluc-
tuations of the pointers and boundary effects. Numerical simulations indicate
that for decreasing learning rate the accuracy of o improves by a power law
with an exponent smaller than one, depending on the algorithm and input di-
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mension. Thus, long learning rate are needed to reproduce nicely the predicted
values. As this holds already for the original algorithms their controlled ver-
sions cause even longer runs due to the necessity of additional averaging, such
as in eq. (9). As for non trivial data distributions large learning rates may
cause topological distorsions, a further advantage of NG networks compared to
SOM becomes apparent, although the reliability of the learned connectivity in
topology representing networks may suffer at large e.

Due to the lack of space we cannot compare here to results obtainable by
other special algorithms for neural vector quantization. However, compared
to the basic k-means algorithm, which yields error-optimal partitions as the
NG does, the neighborhood interaction speeds up the global reordering of the
pointers necessary for changing « at least by an order of magnitude. Further,
effects of approximations concerning the form of the receptive fields implicit in
(9) are reduced by M-induced local averaging.

In the present paper we reported a approach which allows to control neural
maps like SOM and NG to produce an optimal vector quantizer. The scheme
relies on an effective modification of the input distribution performed by a
position dependent adaptation of the learning rate. In neural gas maps the
results are valid for arbitrary data dimension, which, however, has to be known
in advance, but may be determined even for heterogeneous data sets e.g. by
local principal component analysis [2].
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