ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 279-284

A multistage on-line learning rule for
multilayer neural network

P. Thomas, G. Bloch and C. Humbert

Centre de Recherche en Automatique de Nancy, CNRS UPRES A 7039
ESSTIN, Rue Jean Lamour, 54500 VANDOEUVRE, FRANCE
Tel: +33 (0)3 83 50 33 33; Fax: +33 (0)3 83 54 21 73
E-mail: thomas @cran.esstin.u-nancy.fr

Abstract. One hidden layer feedforward neural networks are considered here,
Parameters estimation of such networks requires a supervised learning which
can be carried out in batch mode or on-line. From the first batch learning
paradigm, i.e. backpropagation or steepest descent method, many
improvements have been proposed. Batch learning can nevertheless present
some limitations. On-line algorithms, as stochastic processes, can prevent the
learning from getting trapped in a local minimum. On the other hand, for
applications requiring real-ime adaptation, these algorithms are
indispensable. In this paper, a new on-line learning algorithm, exploiting the
separability of the network into linear and nonlinear modules, is proposed and
compared with the standard RPE algorithm, particularly for learning new
operating zones.

1. Introduction

The popularity of neural networks in many engineering fields (system identification
and control, robotics, signal processing, etc.) is mainly due to their abilities to
approximate complex nonlinear mappings directly from data. The neural networks
considered here require a supervised learning. This learning can be performed in
batch or on-line version. From the first batch learning algorithm presented by
Rumelhart and McClelland in 1986 [7], many effective improvements have been
proposed [3; 12; 9]. The batch learning can nevertheless present some limitations
(slowness for error surface with flat ‘plateaus’ or narrow ‘valleys’, convergence to
local minima). On-line algorithms, as stochastic processes, can prevent the learning
from getting trapped in a local minimum. On the other hand, for applications
requiring real-time adaptation, these algorithms are indispensable, for example when
the underlying system to be learned changes during time, or when a new operating
point is reached. Basic on-line algorithms suffer also of the slowness of the learning.
Other methods exploiting the separability of the networks into linear and nonlinear
modules have been thus studied [5; 8; 11].

The one hidden layer perceptron with linear activation function at the output is
considered here. The form of this neural network is given, for single output, by:

n n n n
y= zl,wizxil +b?% = iwizg(z%Hbz = iw?g{ fwilhxg +I3i1)+b2 (1)
i=1 i=1 i=1 h=1

ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 279-284

where xg, h =1, ..., ng, are the inputs of the network, W}h and bil, i=1,.., np,
h=1,--+,nq, are the weights and biases of the hidden layer, xil, i=1,.., ny are the
2

outputs of the hidden neurons, w: and b2 are the weights and bias of the output

1
neuron. All the weights and biases of the network are grouped in the parameter
vector 6. The activation function g used in the hidden layer is the hyperbolic tangent.
The proposed learning algorithm is described in the next section and compared in a
third part on a simulation example with the RPE algorithm (Recursive Prediction
Error) proposed by Billings and Jamaluddin [1].

2. The multistage learning algorithm

The proposed algorithm does not use the backpropagation principle but exploits the
structure of the neural network in order to make each neuron work individually. The
algorithm is based on the estimation method for the linear systems called ALS
(Alternated Least Squares) [4; 6]. ALS method permits the identification of MIMO
(Multi-Input, Multi-Output) linear systems which can be divided into MISO (Multi-
Input, Single-Output) sub-systems.

In the algorithm presented here, each neuron is considered as a sub-system with
inputs, output and parameters. The neural network can be so considered as a MISO
system that can be broken up. The outputs of the hidden neurons which are not
measured can be estimated by using the inputs of the network as well as by using the
output of the network. During the learning, at each time t, the algorithm updates
alternatively the hidden weights and biases, then the output weights and biases.

The initialization of the learning algorithm is performed by initializing the biases
and weights of the network, following [10], and by calculating, for each hidden

neuron i, the weighted sum Eil(t) at time t = 1 (the arrow shows the propagation
direction of the information). This weighted sum is calculated by using the initial

weights connecting the input layer to the hidden layer by:

| Q10 1
Z,()= Zwihxh(t)+bi i=1-,n (2)
h=1

Step I: The weighted sums E}(t) are calculated by using the information given
by the desired output of the network y(t), at time t, and by using the weights and bias
connecting the hidden layer to the output layer:

1 -1 2 &2
zy (=g (y(O=b" = 3 wi.gz;()) i=L-ny (3)
=l
J#
However, when the weighted sum of the hidden neuron i E! (t) is calculated by using

the information given by the network output, the weighted sums E}(l) of the other

ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 279-284

hidden neurons j are not known. If é(t) is supposed to be close to the real

parameters of the system at time ¢, 'i}(t)='z’}(t) can be written. The use of this

relation in equation (3) permits the estimation of Ei(t). However, this
approximation can lead to some problems due to the inversion of the activation

function. So the estimation of 'z'%(t) ,i=1, .., ny is given by:

')Zil(t)=y(t)—b2—ijz.g('z’}(t)) i=1,..,n (4a)
£
and:
o if Xl ()>1
dw=1"@w) itfxlo|<1 (4b)
-a if %} (t)< -1

where the positive constant o is taken here equal to 1. Equation (4b) avoids the
activation function inversion problems and prevents the saturation of the hidden
neurons, particularly if outliers are introduced in the learning. The parameter o, can

be tuned to constrain the weighted sum 'ill (t) in a fixed range.

S’teg 2: For each neuron i of the hidden layer, the weights W}h and bias bi1 are
estimated by using a recursive algorithm:
- d(t — Tt bt — _
P(t) = P(t=1)— P(t 1)¥f(t,A9(t D)y~ (1,0(t lA)) P(t-1)
1+ w7 (4,60t - 1)) P(t = 1) w(t,8(t - 1))

(5a)
and:
8(t) = 6(t—1) + P(t) w(t, 8(t - 1)) e(t, 8t — 1)) (5b)

Here é(t) comprises the estimated weights and bias of the neuron concerned at time
t

80 =[-8 Bl
€ is the residual obtained for the output of the neuron:
1,
e(t,6(t-1) =z} () -7} (1,6t 1)) =7 (1) - b Wiy (t-Dx (- bl (t-1)
h=1
and V¥ is the gradient given by:

3 (1,6)

Y(t,8(t-1)) =- %

= -x)) 1"

9=é(t—71)

ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 279-284

Step 3: The new weighted sums 'z'.il(t) are calculated by equation (2) by using the

new weights and biases obtained at the previous step and the information given by
the input of the network.

Step 4: The weights Wi2 and the bias b? of the output neuron are estimated by

using equations (5) with here é(t) comprising the estimated weights and bias of the
neuron concerned at time t:

60 =[wF (1)) (0 B>)"

€ is the residual obtained for the output of the neuron:

~ - 0] -
e(t,0(t-1) = y(© = (6t - 1) = y() - L W? (t= Dzl () - b2 (t-1)
1=1
and ¥ is the gradient given by:
w(t,8(t-1) = 93(1,0)] A
90 lo=(i-1)
Step 5: If terminated criterion is not satisfied, t = t + 1 and go to step 1.

This algorithm is called JDA (Job Distribution Algorithm) in the next section.

= (g7 (1) - g(z!

() it

3. Simulation results

The two recursive algorithms JDA and RPE [1] are compared. The simulation
system is a discrete time NARX system proposed by Chen et al. [2]:

211 2011
y(0=08-05¢7Y Dy yt—1)-03+09¢7Y Dy y-2) ©)
+u(t—=D+02u(t—2)+0lu(t=1) u(t=2)+e()
where the input of the system at time t, u(t), is a sequence of steps of random
duration with magnitude randomly chosen between -1 and 2, y(t) is the output of the
system, e(t) is a Gaussian white noise of mean 0 and variance 0.16. The input vector
of the network comprises the two delayed inputs u(t-1) and u(t-2) and the two
delayed outputs y(t-1) and y(t-2). In the simulations, the network used has 5 hidden

neurons and the two algorithms use the same initial parameters. The test criterion is
the MSE (Mean Square Error):

n
MSE=—II; > (y(H) = §(0)? @)

=1
In a first time, the performances of the two algorithms to learn on-line the
parameters of the network are compared. Figure 1 shows the evolution of the MSE
criterion, for one example, during learning for the two algorithms. Other simulations
give similar results. This figure shows that the two algorithms have similar
performances at the beginning of the learning, but that the JDA algorithm is faster in
the sequel.

ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 279-284

0 00 400 600 80 1000
Fig. 1. Evolution of the MSE criterion (JDA : gray - RPE : black).

These two algorithms are recursive. They should thus adapt to an evolution of the
system or to a change of operating zone. The first case has been studied in [11]. In
this case, the JDA algorithm presents better results, i.e. faster adaptation, than the
RPE algorithm. An example of change of operating zone is presented here. In this
case, the initialization of the network is performed by a batch learning with inputs
comprised between -1 and 2. For the on-line learning, the input is a sequence of
steps of random duration with magnitude randomly chosen between -1 and 2 for
t <300, and between 3 and 6 for t > 300. Figure 2 presents the input of the system
for the on-line learning.

0 200 400 600 800 1000

Fig. 2. Input of the system for the on-line learning.

Figures 3a and b shown the residuals obtained during time for the JDA and RPE
algorithm respectively.

20 . - . . 20 . . T
10F 10k
0 WWM 0
-10F -10F
20 : . . -20 . ' :
0 200 400 600 800 1000 0 200 400 600 800 1000
Fig. 3a. Residuals obtained with JDA Fig. 3b. Residuals obtained with RPE
algorithm. algorithm.

The comparison of these two residuals shown that the JDA algorithm learns more
quickly the new operating zone than the RPE algorithm. The residuals obtained with
RPE algorithm are larger than those obtained with JDA algorithm until t = 700,
particularly for each change of operating point.

ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 279-284

4. Conclusion

In this paper, a new on-line learning algorithm (JDA) has been proposed and
compared with the RPE algorithm in a simulation study. The first simulation
example shows that the new algorithm learns more quickly the parameters of the
network than the RPE algorithm. In a second time, the generalization of the network
to a new operating zone is studied and the JDA algorithm gives also better resullts.
This new algorithm seems interesting to use, particularly, for example in adaptive
control with neural networks.

5. References

1.

10.

11.

12.

BILLINGS S.A., H.B. JAMALUDDIN (1991) ‘A comparison of the backpropagation
and recursive prediction error algorithms for training neural networks’,
Mechanical Systems and Signal Processing, Vol.5, 3, 233-255.

CHEN S., S.A. BILLINGS, P.M. GRANT (1990) ‘Non-linear system identification
using neural networks’, Int. J. Control , Vol.51, 6, 1191-1214.

CicHOCKI A., R. UNBEHAUEN (1993) Neural networks for optimization and
signal processing, John Wiley & Sons, New-York, USA.

MIELCAREK D., C. LOFFLER, J. RAGOT, G. BLOCH (1991) ‘A comparative study
of some recursive parameters estimation algorithms for multivariable systems’,
IMACS Annals on Computing and applied mathematics, Vol. Mathematical and
Intelligent Models in System Simulation, 59-64.

Parist R., E. DICLAUDIO, G. ORrLANDI, B.D. Rao (1996) ‘A generalized
learning paradigm exploiting the structure of feedforward neural networks’,
IEEE Trans. on Neural Networks, Vol.7, 6, 1450-1460.

RaGot J., D. MIELCAREK D. (1992) ‘Recursive identification of multivariable
interconnected systems’, Int. J. Syst. Sci., Vol.23, 6, 987-1000.

RUMELHART D.E., J.L. McCLELLAND (1986) Parallel distributed processing,
The MIT Press, Cambridge, England.

SCALERO R.S., N. TEPEDELENLIOGLU (1992) ‘A fast algorithm for training
feedforward neural networks’, IEEE Trans. on Signal Processing, Vol.40, 1,
202-210.

SHEPERD A.J. (1997) Second-order methods for neural networks, Springer,
London, England.

THOMAS P., G. BLOCH (1997) ‘Initialization of one hidden layer feedforward
neural networks for non-linear system identification’, Proceedings of the 15"
IMACS World Congress WC'97, Berlin, Germany, 25-29 August, Vol.4, 295-
300.

TroMmAs P. (1997) Contribution a Uidentification de systemes non linéaires par
réseaux de neurones, Thése de doctorat de Iuniversité Nancy I, CRAN,
spécialité automatique.

VAN DER SMAGT P.P. (1994) ‘Minimisation methods for training feedforward
neural networks’, Neural Networks, Vol.7, 1, 1-11.

