ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 21-26

An Incremental local Radial Basis
Function Network

Anna EspositoT
Maria Marinaro*!, Silvia Scarpetta®, INFM, Unita di Salerno,

. Salerno, Italy
T International Institute for Advanced Science Studies
"E.R.Cailaniello”
Via Garibaldi, Vietri sul Mare, Salerno, Italy * Universitd di
Salerno, Dipartimento di Fisica Teorica ”E.R.Caianiello”
Via S. Allende, Baronissi, Salerno, Italy

Abstract. In this paper we present a learning algorithm to approxi-
mate functions which are piece-wise continuous.

The network is a RBF net in which the normalized functions are re-
stricted to finite domains, and their variances are updated by supervised
training. The net architecture grows during the training phase, increas-
ing the number of hidden nodes in order to use a finer resolution where
it is needed. The ability of this kind of net to save training time depends
on selectively growing the net structure and on the locality of the basis
activation functions. Some examples of the net performance are shown.

1. Introduction

The network is designed to rapidly approximate piece-wise continuous real val-
ued functions f : @ — y from k—dimensional input space, € Sinput, to one
dimensional output space, y € Syu:. The net is supposed to learn the function
from a finite set of examples I'y, = {@®;,yi;i = 1,...,p} where y; = f(z;).

The network is a Radial Basis Function Net [2] in which the normalized [1] basis
functions are restricted to finite domains. Each hidden node is a prototype of
the function in his domain and it is forced to be zero-value outside his domain.
The net architecture grows during the training phase, increasing the number
of hidden nodes in order to use a finer resolution where it is needed to describe
the function f embedded in the data of the training set. The input space is
quantized into partially overlapping local domains. An hidden gaussian proto-
type node is assigned to each domain. The number of hidden prototype nodes,
equal to the number of domains, starting by one, is increased, one by one,
until a satisfactory approximation of the function f is reached. The centers
of the radial basis functions are fixed according to a predetermined rule which
make use of both inputs and targets of the training set, while the variances are
determined by a supervised optimization technique.

ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 21-26

2. The network model

The net has & input nodes, one output node, and two hidden layers. The first
hidden layer contains an increasing number of gaussian prototype nodes.

The activation function ¥(z, #;, 5;) of the hidden node h; is a gaussian function,
centered in &;, with variance §;, restricted to the local domain of radius r;:

U(x,%;, B;) = or, () exp(—Bi(z ~ &)?),

1 ff(z-%)2-r3<0

ori(e) = { 0 ofglerwise) !
and §; are parameters that have to be learned in the training phase.
It’s ' worth to note that use of &,, allows us to have well localized activation
functions independently from the value of variances 3. The second hidden
layer contains two nodes, N and D, which are connected to the #*® node of the
first hidden layer with weights y; = f(x;) and 1 respectively.
The two nodes compute the OR functions of the first layer hidden nodes.
The net output is the ratio of N and D nodes outputs. Thus at the N** step

we have: N
i viexp(=pi(x — &;)?)o,,(x)
Oy (a’) = N s
2 exp(=pi(x — &:)?)or, ()
Namely the output of the net is a weighted average of the prototype values y;,

By (z) = Zwi(w)yi

. The weight in this average are the probability functions:

wr(a) = Rz =)oy (@)
= e (=Ai(e - #)%)or, ()

3. The training phase

The training phase is an iterative process which adds a node at each step. Each
step i1s formed of three stages:

a) A new node is chosen and parameters E;, y; are fixed.

b) The radius of the new node domain is settled and the radii of the near
domains have to be resettled. So a new domain appear and the near
domains become smaller.

c¢) The adaptive parameters 3 are changed according to a learning rule.

We use as examples to train the network a set I', of p points {t;, fi = f(t;)}i=1,p
where t; are chosen random in Sinput.
More in detail, we perform the following operations at the ** step of the

ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 21-26

training phase :
e We choose from the training set I', the point (z,, f;) such that

(fs — ®i—1)® = max (fr — ®;_1)?

r=1,..., P

L.e. the point where the squared error between target and net output is largest.
And we add a new node i whose center is fixed equal to ;.
e The weighted connection y; from the new node to the node N of the second
hidden layer is settled to the value y; = f;, that is the target of the input ;.
e The radius (or threshold) r; of the new domain is settled (see next section).
e Once the parameters &;,y; and r; of the new node are set, the variances 3 of
all the nodes are trained using a gradient descendent method with momentum,
minimizing the sum E = }F_, (f, — ®i(t,))?, over all the points of T, of

=il
squared error between network output and the target output:

Bi(t) = Bt — 1) + AB;(2)

AR (1) = 1o + uABi(t - 1)
15

where 7 is the learning rate and y is the momentum gain.
All the points of the training set are presented to the net several times, until 3
parameters are learned. The learning of parameters 8 of the activation func-
tions by gradient descendent algorithm represents a non-linear optimization
problem which will typically be computationally intensive and may be plagued
with a multitude of of local minima and plateau which can usually retard the
learning process. But, this is not the case. In fact, by appropriate choose of the
thresholds, any given input will only generate a activation in a small fraction
of basis functions. Moreover, at each step, the new prototype node we add has
only a local influence and the B parameters of the prototype nodes far from
the new one, learned in the preceding steps, are still good parameters.
During the §-training the largest squared error between network response ®(%,)
and target f. is stored with the corresponding input and target value (i, f).
This point (¢, f5) is the prototype value of the new node that will be added
in the next step. If the net output is an enough good approximation of the
function which have to be approximated, the training is stopped, otherwise the
next (i + 1) step begins and a new node is added.

4. Setting the thresholds

The radius r; of each new hidden gaussian node 7 is settled in a different way
according to the dimensionality of the input.

In the case of one-dimensional input space the rule is the following. We choose
two different radii for each new node ¢, a left threshold rF and a right threshold
rE. We set vl (rf) to the distance between the centre #; and the left (right)
next-neighbour domain centre. Also the radii of the two next-neighbour do-
mains have to be resettled with the same rule. In such a way all the domains

ESANN'"1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 21-26

are partially overlapping and each point of the input space belongs to two
overlapping domains (except only points near the boundary part of the input
space).

If the input space is bidimensional we set the radius of the new node in such
a way that all domains are partially overlapping with some of the neigh-
bour domains. Let r1 the minimum distance between the new node centre
&; = (%i,1, Zi,2) and the others centers #; such that

c=
k

2
(:T:,-,k — :T:j,k) >0

=1

and let 72 the minimum distance between the new node centre and the others
node centers such that ¢ < 0. Let rrl the distance of the second-neighbour
node with ¢ > 0 and let r72 the distance of the second-neighbour node with
¢ < 0. The radius of the new node is settled to the larger between r1 and r2 if
the number of nodes is small (less then 10) and to the larger between rr1 and
rr2 if there are more then 10 nodes or if the parameter ¢ of all the nodes have
the some sign. Also the radii of the other domain have to be resettled with the
same rule. In such a way quite each point of the input belongs to, at least, two
overlapping domains.

5. Simulations

In this section we present some results obtained considering one and two di-
mensional functions.

The first test is a one-dimensional function f(z) = sin(z) + sin(bz) + sin(3z)
with £ € [-0.35,3.5]. The output was scaled to lie in the range [0,0.9). Both
the training set and the test set consist of 100 input-output pairs generated
random in the input-domain.

The growing procedure has been stoppen when the mean squared error is less
than 0.001. The net structure has reached 7 hidden gaussian nodes. The mean
squared error is 0.0004. Results are shown in fig. 1.B. Our performance is com-
parable with the one obtained by Vinod and Ghose [5] for growing nonuniform
feedforward networks for continuous mappings.

We have test our algorithm also on a function with some discontinuity points,and
we have obtained a good performance in this case too. An example is reported
in fig. 1.A. The function is

sin(x) + sin(bz) + sin(3z) ifz<04ore>21
fle)=140 ifl<z<15
sin(z) + sin(bz) + sin(3z) — 2.5 otherwise

The input domain is z € [-0.35,3.5]. :
The training consists of 100 input-output pairs generated random in the input-
domain.

The learning process has been stopped when the net structure has reached 12

ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 21-26

0.9 F 2Er_ 4

0'8?[\ A 15E—§i‘=§

o | Nle=ef

o] ‘W NS ;

0,4E J 0?; [i‘

03 RO T IR I

0.2 E: ;; ?f § E ;

0.1 B H H

0 ||| _Eé;.'.u_,”,.‘t\a...-|..
3 0 1 2 3
1.A 1.8

oo = =N
Py Ramy RN
N — LAk iLn

Figure 1: The dotted line is the net output and the thin line is the function to
be approximated. (1.A) f(x) = 0.5 % ezp(—=x) * sin(6z) (1.B) A discontinous
function approximation. Figure 2: Approximation of the function f(z,y) =
log(x +y) (2.A) the net output (2.B) the target function f(z,y) = log(z + y).

hidden gaussian nodes.

The third function is f(z1,z9) = log(zy + z2). The input domain is z; €
[0.5,3.75], 25 € [0.5,3.75] The training set consists of 500 input-output pairs
generated random in the input-domain. The results shown in fig. 2 are obtained
stopping the learning process when the net structure has reached 11 hidden
gaussian nodes.

6. Conclusion

The ability of this kind of network to save training time depends on selectively
growing the net structure and on the locality of the basis activation functions.
The thresholds of the activation functions turn out to be very useful when one

ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 21-26

wants to approximate a function with some discontinuity points.

The error-driven growth is an heuristic attempt to enforce the net to use a finer
resolution only where it is useful to describe the function f embedded in the
data of the training set.

In the networks where a lattice quantization of the input space is used [4], it’s
difficult to choose an optimal lattice spacing, and usually a multi-resolution
hierarchy becomes needed [3]. If a single uniform scale of resolution is used,
there is a trade-off between the ability to generalize and the ability to capture
fine detail.

Our approach does not use a lattice quantization of the input space but it per-
forms a partitioning of the input space according to a rule which determine the
prototypes’s position and the domains’s dimension. The rule make use all the
information contained in the training set. This leads to placement of a set of
prototype vector in input space that isn’t necessary lattice-form but it reflects
the distribution of the input-target data points.

Finally the possibility to have different values of variances 8 makes our ap-
proach more flexible of other methods previously introduced. Experiments
about a kind of network with a similar growing strategy but without thresh-
olds are in progress.

References

[1] H. Schioler and U.Hartmann. Mapping Neural Network Derived from the
Parzen Window Estimator. Neural Networks Vol. 5 pp. 903, 1992

[2] C.M.Bishop, Neural Networks for Pattern Recognition, Oxford University
Press, 1995.

[3] J. Moody, Fast learning in multi resolution hierarchies. Advances in Neu-
ral Information Processing Systems 1. Touretzky ed., pp. 29-39, Morgan
Kaufmann, SanMateo, CA.

[4] Bulsari Neural Networks, Vol. 6, 1993

[6] V. Vinod and S. Ghose, Growing nonuniform feedforward networks for
continuous mapping, Neurocomputing 10 pp.55, 1996

