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ABSTRACT: A design procedure for uncoupled CNN templates, based on input/out-
put mappings, is presented. A table of mapping types, parameter inequalities and error
tolerances is provided. The minimum relative accuracy of the parameters required in
order to guarantee correct operation is given in closed form. We demonstrate the design
on several examples.

1. Introduction
Cellular neural networks [1] (CNNs) constitute a class of locally connected nonlin-
ear dynamic systems which can be realized as analog VLSI circuits. Recent imple-
mentation literature includes [2-4]. The basic equation underlying CNN dynamics
is
dx;;

d;] = —xij +Y_ aiju fGu) + Y bijrrun+1. (1)
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The nonlinearity f(-) is the piecewise-linear function

1
F) = x+1 =l =11

;j denotes the set of all cells with which the ij-th cell is connected. The network
parameters for spatially invariant CNNs are given in a template set or simply tem-
plate, consisting of the feedback matrix A and the control matrix B, comprised of
{a;;} and {b;;}, respectively, and the overall network bias 7. The CNN inputs and
outputs are defined to be u;; and f(x;;), respectively. Generally, a CNN operates
by choosing a template set A, B, I, and appropriately assigning some initial data
to u;; and x;;(0). A desired output is then obtained as a stable equilibrium point
of (1).

The processing time, i.e., the time required to reach the equilibrium point,
is limited only by parasitic capacitances of the analog circuit realization. On the
other hand, a compact analog circuit will realize each parameter with only a limited
degree of accuracy, on the order of 10% [2,4].

The nature of some CNN processing tasks requires that each cell interact with
the cells in its neighborhood in a static way, meaning that the output of a particu-
lar cell depends only on its input and on that of its neighbor cells (feedforward),
rather than requiring feedback from neighbor cells during processing. This class
of processing tasks can be described by static input/output mappings and imple-
mented by uncoupled CNNs. In an uncoupled CNN, each cell is allowed to have at
most self-feedback. An extended formulation of this condition in terms of Boolean
function characterization can be found in [5].

In this tutorial we describe simple design rules for uncoupled CNNs. We asso-
ciate with each rule a measure that quantifies the robustness degree of that par-
ticular rule. Emphasis will be placed on implementing tasks by a single template.
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However, this may imply high sensitivity, particularly—as will be seen below—for
tasks requiring a large degree of connectivity. Such accuracy may not be conve-
nient or possible to implement in an analog CNN circuit, where any increase in
accuracy implies more complex circuitry, more chip area and increased power con-
sumption.

At the cost of a sensitivity—complexity tradeoff, high connectivity processing
tasks can be realized in a highly robust way by decomposing the task into sim-
pler CNN subtasks and combining the partial results with suitable logical opera-
tions [6]. This requires a programmable CNN, and the CNN circuit must be em-
bedded in a computational device [7] capable of performing combinational logic
operations.

Throughout this paper, it is assumed that the inputs and outputs are bipo-
lar (1), and that the processing tasks in question do not require feedback among
cells. The procedures herein are not applicable to tasks which do require feedback
among cells (coupled CNNs).

2. Need for Robust Template Design

The template values, i.e., the entries of A, B and the value of /, can only be
implemented or programmed with finite accuracy. In particular, this restriction
must be kept in mind if the CNN processing is to be performed by an analog CNN
circuit, where accuracy is necessarily limited [2]. Various other error sources are
present in an analog CNN circuit. We cannot assume that the input values u;;
arc highly precise, that the initial states x;;(0) are set very precisely or even that
the output function saturation level [1] is exactly =1. These non-idealitics can be
considered to be error sources which occur in addition to template value errors.
It is analytically and conceptually convenient to keep the form of the errors as
aij +8ajj, bij +38b;j and I +481, where a;; and b;; are the entries of the A and B
templates, and [ is the bias of the CNN template, respectively, and to increase the
error terms - to account for other errors.

[t is straightforward to account for u;; errors: the contribution in (1) due to a
B template entry b is +|b| if everything were precise. Due to errorsin u;; and in b
the current magnitude will actually be I, = (b+8b)(u+&u) = b+ 8b(1+5u) +bdu.
In considering a template’s robustness one should use the error term §b(1+ 8u) +
béu in place of the “template error” of b, in other words increase the relative error
from just % to (8b(1+8u)+bdu)/b.

Accounting for initial state or output saturation errors is not as straightforward.
In the case of uncoupled templates and for typical error values these error sources
usually do not need to be treated analytically [6].

A significant factor in considering the robustness of a particular template is
the degree of connectivity of a task, which in the case of uncoupled CNNs means
the number of non-zero entries in the B matrix. A higher degree of connectivity
necessarily implies less robustness.

2.1. Robust Design of Uncoupled Templates

The approach used here is based on input/output pairs and input configurations
to-be-recognized, and expressing these in terms of constraints on the values of the
template parameters. We use the convention that a black pixel, shown as e, has the
value +1, and a white pixel, o, has the value —1. The boundary cells are assumed
to be set to white (—1).
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Input Output Type Condition error term €

Ter  — . bistable wij > l-a;  w+ac—1 (1a)
et - o bistable wij <—l4+a; -—w-1+a. (1b)
R .

e = . bistable

ot . wij|bc=0= 0 —lbcl+ac—1  (Ic)
co. - o bistable

ter = o monostable wjj < l-—a. —w+l-a (2a)
ter o . monostable wij > —1+ac w+1—ac (2b)

Table 1: Uncoupled CNN trajectory types. Input cells denoted by - are
given by the prescribed mapping. In each case, w;; has the value given
by (2) for the particular input configuration. Except for the center cell, the

two configurations T, case (1c), must be identical.

A template is said to recognize or detect a particular input configuration (input
pattern) consisting of black, white and “don’t care” cells (e, o and *, respectively),
if the output for that particular input configuration is black. The opposite output is
produced for all other input configurations.

Consider an uncoupléd CNN with neighborhood ;; described by

fcij = —Xij +a€sat(xij)+wij y  Wij = Z bpnttmn + 1, (2)

mneN;

and assume that the initial states x;;(0) and the inputs u;; are both set to the
input image. From the phase diagram [5] corresponding to (2), the design rules
given in Tab. 1 can be obtained. These rules correspond to a, > 1. Two common
cases are distinguished, monostable and bistable. Other less often used cases are
listed in [5]. In the monostable case the phase diagram has only one equilibrium,
whereas in the bistable case, Fig. 1, there are three equilibrium points, two stable
ones separated by an unstable one. A robust design is now obtained by choosing

Figure 1: Phase plot, bistable CNN, |w;;| < a.—1

the nominal values of the A and B templates and of I such that the corresponding
inequalities in Tab. 1 hold, even if the templates are subjected to some prescribed
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error. In the worst case the error term is
A=Y 18bnl +[8ac| + 1511, 3)

mn
where the indices mn are taken over all non-zero terms in the B template. This
error term should be included in the inequalities so as to make the particular condi-
tion a stronger upper or lower bound. For example, if w;; > 1 —a,, Tab. 1, row (1a),
is to still hold with template errors, then the nominal values have to satisfy the in-
equality

wij—A=1-a.. (4)

Relations like (4) can be understood in two ways. First, for a given A, eq. (4)
provides a constraint on the nominal template values, which in this case is w;; +
a. > 14+ A. Second, for an uncoupled template whose mapping requires the con-
straint w;; > 1 —a., ¢q.(4) sets a bound on the maximum possible A, namely
A < e =wj+a-—1. The expression for e for each phase plot type is included
in Tab. 1.

The case Tab. 1, row (1c) needs to be considered separately. This is the case
when both a black and a white cell with identical neighborhoods are to be mapped
to the same respective output color. If the nature of the task (the other mapping
constraints) permits the center B matrix element b, to be zero, w;; does not de-
pend on the center cell’s input. Tab. 1, rows (1a) and (1b) clearly imply that the
optimal choice is to set the intermediate equilibrium point p in Fig. 1 so as to ob-
tain p =0, i.e., w;; = 0. The other mapping constraints may, however, require
that b, # 0. In that case the optimum is to “center” the w;; values for the black
and white center cell around zero, i.c., require that wijl, = (0, and then obtain b,
from the other mapping constraints. -

Assume now that the template entries are subjected to relative errors of «, i.c.,
|bac| < alacl, |8bmnl < a|bp,| and [81] < «|I]. It follows from (3) and relations of
the type (4) that for each input configuration, i.e., for each w;; or e, we can write

€
» ®)

Zmn |byn| + lac| + |1
The inequality (5) gives the minimum relative accuracy required for each in-
put configuration, and has an important implication: The higher a task’s connectiv-
ity—which in the case of an uncoupled template means the more non-zero terms
there are in the B template—the more sensitive the task becomes. The higher sen-
sitivity arises from two related factors. i) The number of non-zero B entries, and
if) the larger absolute values of the B entries. If the relative template error can
be guaranteed to be smaller than min ¢, , where the minimum is taken over all in-
put configurations relevant to the task, then the template is guaranteed to operate

correctly.

3. Examples

In this section we introduce several CNN templates as examples of the design
procedure for uncoupled CNN templates. Special attention will be paid to the
templates’ robustness degree.

Horizontally Isolated Point Detection. The templates of this type recognize points
isolated with respect to the horizontal direction. This template performs the map-
ping that the input configuration o e o leads to a black output (e) and all other

e <
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input configuration to white (o). This can be accomplished by assuming the tem-

plate set _ )

A=[0a 0] B=[—c 0 —¢] I=i, (6)
and applying the rules of Tab. 1. The initial configurations o e o and o c o are
mapped correctly if w;; =0, i.e., i = —2¢, Tab.1,row (1c). Furthermore, for the

configurations e e o and o e e we should satisfy i < 1 —a, Tab. 1,row (2a). The
constraints for the configurations e e ¢ and e o e arc —4¢ =2i < 1—a (Tab.1,
row (2a)) and —4c =2i < —1+a (Tab.1,row (1b)), respectively. The constraints
of the configurations e o o and o o e are subsumed in the previous ones. From
the constraints, the following values can be obtained.

A=[020] B=[-10 —-1] I=-2. (7)
By (5) these values have a relative robustness of 16.6%.

[t is apparent that the two off-center white cells could be in any position within

the CNN neighborhood, so isolation along other “directions” can be found. Fur-
thermore, changing the sign of the off-center B template entries will detect the
presence of black neighbors, rather than white neighbors. In general, any input
configuration having a black center cell, two off-center black or white cells, and
6 off-center “don’t care” cells can be recognized by a template similar to (7).
Line Detection. The task of “line detection” finds groups of two or more pixels
which are positioned so as to form a “line” along a direction on the cell grid. Here
we consider horizontal line detection (HLD); by rotating the templates, lines along
90° or 45° directions can be detected as well.

HLD can be defined as recognizing the input configurations e e e, o e e and
e o o. Usually this recognition is performed by coupled templates [8,9]. Here we
design an uncoupled HLD template.

By the nature of the task we assume the following template:

A=la] B=[c b (] I=i.

For the input configuration o e e we get by Tab. 1,row (1a) the relation b +i =
1 —a. For the input configuration e o e we get by Tab. 1, row (1b) the relation 2¢ —
b+1i < —1+a. Finally, for the input configuration o e o we get by Tab. 1, row (2a)
the relation —2¢+b+i < 1—a. It can be shown that the constraints for the re-
maining configurations e e e, 0 o 0 and e o o are already subsumed in the above
incqualities. The constraints simplify to

a=1 ¢>0 i<0 bpn<=b<l—a—i+2c, (8)
with byin = max{l —a+c¢,1 —a—i,1—a+i+2c}. A possible uncoupled HLD
template is therefore

A=[2], B=[1 1 1], I=-1. (9)

This template can, by (5), tolerate relative errors of about 16.6%, as compared to
3.3% for similar templates published elsewhere [8].
Edge Extraction with Diagonals We consider a black cell with exactly eight black
neighbors an interior cell; all other black cells are edge cells. Therefore, we seek
to recognize black cells with af least one white neighbor. The following template
set is assumed for the design:

0 0 0 c ¢ ¢
A= 0 a 0 B=|¢ b ¢ I=i. (10)
0 0 0 c ¢ ¢
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The design procedure is similar to the above examples and the defining inequalities
turn out to be
a>1, ¢<0, i<0, bpn<b<l—a—8c—i, (11)
with bpin = max{l —a—7c,1-a—6¢c—i,1—a—8c+i}. By (5), the template
of (11),witha =3, b=6, c=—1 and i = —1, admits a relative error of only 5.5%.
Such accuracy is impractical to reliably implement in analog circuits and would
require area-consuming circuitry to achieve. Single template edge extraction in-
cluding diagonal cells is therefore a processing task not well suited for analog
hardware. Templates for tasks requiring a high degree of connectivity may not
be sufficiently robust to be useable on analog CNN hardware, and a method of de-
composing the templates into low-connectivity, low-sensitivity sub-templates and
logical operations can be used [6].

4. Conclusions

We have presented exact design rules applicable to uncoupled CNNs. The class of
uncoupled CNNs applies only to those tasks which can be described in terms of sta-
tic input/output mappings. The design rules are based on different characteristics
that the phase plot of an uncoupled CNN can have. A-‘measure of robustness for
the set of rules implementing a specific task is given. In particular, this measure
implies that tasks requiring a high degree of connectivity may turn out to be too
sensitive to be useable in an analog CNN circuit. Several examples of the use of
the design rules are presented: horizontally isolated point detection, line detection
and edge extraction. The template values obtained reflect the connectivity—sensi-
tivity dependence.
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