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Abstract: The rapid creation of high-dimensional, continuous mappings is a challenge
for adaptive and learning methods. This paper discusses the “Parameterized Self-organizing
Maps” (PSOM) as a suitable method to achieve excellent generalization capabilities from a
small set of training data, by making use of available topological information. Furthermore
the PSOM provides as an important generalization a flexibly usable, continuous associate
memory which is, unlike most other existing approaches, not limited to the representation of
input-output mappings. This allows to deliver several related mappings — coexisting in a single
. and coherent framework.

We present two application examples from the field of robotics, a field where the acquisition
of large amounts of training data is a severe cost factor. Using only 27 data points, a PSOM
can learn the inverse kinematics of a robot finger with a mean positioning accuracy of 1% of
the entire workspace.

Task specifications for redundant manipulators often leave the problem of picking one solution
from a subspace of possible alternatives. The PSOM approach offers here a flexible and com-
pact form to select from various constraint and target functions previously associated. Here, in
particular, the PSOM learns various ways to resolve the redundancy problem for positioning a
4 DOF manipulator.

1 Introduction

Precise sensorimotor mappings between various motor, joint, sensor, and abstract physical
spaces are the basis for many robotics tasks. Their cheap construction is a challenge for
adaptive and learning methods. However, the practical application of many neural networks
suffer from the need of large amounts of training data, which makes the learning phase a costly
operation ~ sometimes beyond reasonable bounds of cost and effort.

In this contribution we present the “Parameterized Self-Organizing Map” (PSOM) approach,
which is particularly useful in situation where a high-dimensional, continuous mapping is
desired. If information about the topological order of the training data is provided (or can be
inferred) only a very small data set is required. In section 2 the PSOM algorithm is derived
from Kohonen’s SOM and its continuous associative completion mechanism explained. In
section 3 we report on a PSOM application for solving the forward and backward kinematics
for a robot finger. '

If numerous degrees of freedom are available one has to pick one configuration of a continuous
space of alternatives. Most solutions of this redundancy problem are based on some pseudo-
inverse control (for a review see e.g. [2]). However a more flexible solution should provide
an ensemble of suitable action strategies and should offer to respond to different types of
constraints. Sec.4 shows how the PSOM contributes an elegant solution.
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2 From SOMs to PSOMs

Kohonen [3] formulated the Self-Organizing Map (SOM) algorithm as a mathematical model
of the self-organization of topographic maps, which are found in brains of higher animals. It
is build by a two-dimensional array A of processing units or formal “neurons”, where each
neuron has a reference vector wq attached, which points in the embedding input space X. A
presented input x will select the neuron a*, which has wp closest to the given input, i.e. a* =
argming, A ||war — x||. By this competition mechanism the input space is tessellated in
discrete patches — the so-called Voronoi cells. The distribution of reference vectors is obtained
by the means of the Kohonen learning rule (see e.g. {3, 6]), which generates a dimension
reducing, topographic mapping from a high-dimensional input space to a m-dimensional index
space of neurons in the array S.

The main question which led to the PSOM appraoch is, how can the network learn a smooth
continuous input-output mapping? The wellknown extensions are the supervised learning of
constant output or a local linear map (LLM) [6] within the Voronoi-cells of each neuron a.
‘However, in general the outputs do not match at the cell-borders, which leaves discontinuities
in the overall mapping.

The PSOM concept [5] can be seen as the generalization of the SOM with the following
three main extensions: (i) the discrete index space .S in the Kohonen map is generalized to
a continuous mapping manifold S € IR™; (ii) the embedding space X is formed by the
Cartesian product of the input space and output space X = X** @ X°* < RR% (iii) a
continuous mapping w(-) : s+ w(s) € M C X is defined, where s varies continuously
over S.

We require that the embedded manifold M passes through all supporting reference vectors wg
and write w(-) : S =+ M C X as weighted sum:

w(s)= Y Ha(s)wa o)
acA

This means that, we need a “basis function” Ha(s) for each formal neuron or “node”, weight-
ing the contribution of its reference vector (= initial “training point”) wa depending on the
location s relative to the node position a, and also all other nodes A (however, we drop in our
notation the dependency Ha(s) = Hy A (s) on A).

L 33
w(s) &

— Figure 1: The mapping w(:) : S —
. M C X builds a continuous image of

continuous . .
mapping = the right side S in the embedding space
L.' s X at the left side (as indicated by the test
Embedded Manifold M Parameter Manifold S grid). The embedding manifold M passes

in space X with array of knots a < A through the reference vectors wa.

A suitable set of basis functions can be constructed in several ways but must meet two condi-
tions: (i) the hyper-surface M shall pass through all desired support points (orthonormality),
i.e. at those points, only the local node contributes Ha, (a;) = 6;;; VY a;,a; € A; (ii) the
sum of all contribution weights must be one: ), A Ha(s) = 1, Vs (partition-of-unity).
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A simple construction of basis functions Ha(s) becomes possible when the topology of the
given points is sufficiently regular. E.g. for a multidimensional rectangular grid, the set of
functions Ha(s) can be constructed from products of one-dimensional Lagrange interpolation
polynomials. See [7] for details.

Specifying for each training vector wa a node location a € A introduces a topological order
between the training points: training vectors assigned to nodes a and a’, that are adjacent in
the lattice A, are perceived to have this specific neighborhood relation. The effect is important
to note: it allows the PSOM to draw extra curvature information from the training set. Such
information is not available within other techniques, such as the RBF approach and is the
essential reason for the generalization capabilities of the PSOM.

When M has been specified, the PSOM is used similar to the SOM: given an input vector x,
(i) find the best-match position s* on the mapping manifold S by minimizing the distance
function dist(-)

d
s* = argmin dist(w(s),x) with(e.g) dist(x,x')= Zpk (zg — m’k)2. 2)
vseS k1

(ii) The surface point w(s*) serves as the output of the PSOM in response to the input x and
can be viewed as an associative completion of the input space component of x. The distance
function dist(-) in Eq. 2 is chosen as the Euclidean norm applied only to the input components
of x (belonging to X®). Thus, the function dist(-) actually selects the input subspace X",
since for the determination of s* and, as a consequence, of w(s*), only those components of
x matter, that are regarded in the distance metric dist(-). A suitable definition will selects all
components k£ with p; > 0 as belonging to the input subspace; output are components k with
pr = 0. The mapping direction can be changed (e.g. reversed) by modifying the coefficients
{ps}.

The discrete best-match (a*) search in the standard SOM is here generalized to solve the
continuous minimization problem. Starting at the closest node s i = a* the s* can be
found by a few iterations using the Levenberg-Marquardt algorithm [7].

3 Example: Robot Finger Kinematics

Figure 2: a-d: (a) stroboscopic
image of one finger in a se-
quence of extreme joint positions.
(b—d) Several perspectives of the
workspace envelope 7, tracing out
a cubical 10x10x 10 grid in the
joint space g (the arrow marks the
fully adducted position, where one
edge contracts to a tiny line).

This section presents the resuits of applying the PSOM algorithm to the task of learning the
kinematics of a 3 degree-of-freedom robot finger of a three-fingered modular hydraulic robot
hand, developed by the TU Munich {4]. Its mechanical design allows roughly the mobility
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of the human index finger, scaled to by 110%. A cardanic base joint (2 DOF) offers sidewards
gyring of £15° and full adduction with two additional coupled joints (1 DOF), see Fig. 2a.

In the case of the finger, there are several coordinate systems of interest, e.g. the joint angles g,
the cylinder piston positions ¢, one or more finger tip coordinates 7, as well as further config-
uration dependent values, such as the Jacobian matrices J for force/moment transformations.
All these quantities can be simultaneously treated in one single PSOM. Here, we present re-
sults of the inverse kinematics, the classical hard part. When moving the three joints on a
cubical 10x10x 10 grid within their maximal configuration space, the fingertip will trace out
the “banana” grid displayed in Fig. 2.

We exercised several PSOMs with nxnxn nine dimensional data tuples (E;'T,C“T,f‘r)T, all

equidistantly sampled in g. Fig. 3a-b depicts a §and an 7 projection of the smallest training set,
n = 3. To visualize the inverse kinematics ability, we ask the PSOM to back-transform a set of
workspace points of known arrangement. In particular, the workspace filling “banana” set of
Fig. 2 should yield a rectangular grid of #. Fig. 3c—e displays the actual result. Distortions can
be visually detected in the joint angle space (c), and the piston stoke space (d), but disappear

.after back-transforming the PSOM output to world coordinates (). The reason is the peculiar
structure; e.g. in areas close to the tip a certain angle error corresponds to a smaller Cartesian
deviation than in other areas.

When measuring the positioning accuracy we get 1.6 mm mean Cartesian deviation, which is
1.0 % of the maximum workspace length of 160 mm. In view of the extremely small training
set this appears to be a quite remarkable result.

Nevertheless, this result can be further improved by supplying more training points. For a
growing number of network nodes the “Local-PSOM” approach offers to keep the computa-
tional effort constant by applying the PSOM algorithm on a sub-grid, see [8, 7].

(b)

Figure 3: a-b and c—e; Training data set
of 27 nine-dimensional points in X for
the 3x3x3 PSOM, shown as perspective
surface projections of the (a) joint angle
X and (b) the corresponding Cartesian
sub space X,.. Following the lines con-
necting the training samples allows one to
verify that the “banana” really possesses a
cubical topology. (¢—e) Inverse kinematic
result using the grid test set displayed in
Fig. 2. (c) projection of the joint angle
space X g (transparent); (d) the stroke po-
sition space X; (e) the Cartesian space
X s, after back-transformation.
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4 Example: Flexible Use of Redundant DOF

In the presence of excess degrees of freedom one has to specify extra constraints to determine
a robot configuration. Here, the PSOM’s ability to select input sub-spaces offers to extent the
embedding space X by various parameterized functions c;. By adding target values for these,
one can utilize the best-match search mechanism to optimize extra goals and constraints.

We illustrate this in the positioning task of a 4 DOF robot in 3D as depicted in Fig. 4 (link
lengths 0,1,0.75,0.75[). For the construction of a PSOM, i.e. the configuration manifold of
the arm, we choose an 3385 grid covering the joint range fe [07,180°]x[0%, 120°]x[—120°, 0°]x
[~120°,0°]. The embedding space X is spanned by x = (01,03, 03,04, rs, 7y, 72, Cs, Co, c1a)T
and contains, similar to the example before, the angles #, 4, the Cartesian position 7, and,
here, three further parameters: cg is the difference (64 — f3)%, ¢ is the elevation angle of
link-3 (relative to the horizontal), and ¢,q is the angle between distal link-4 and the vertical.

This allows to resolve the redundancy in various ways. For example, the goal can be to ...

(i) take the minimal joint motion from the current position to the specified position 7 all we
.need to do is to start the best-match search (ps 7 = 1) at the best-match position s}, belong-
ing to the current position, and the steepest gradient descent procedure will solve the problem;
(ii) keep joint j € {2, 3,4} fixed: additionally specify 6; and p; > 0;

(iif) use similar adduction in the two distal joints (like the finger kinematics): by activating
pg > 0 (to a small value e.g., 0.01) and setting zg = 0. Measuring the deviation for the
inverse kinematics we find a mean value of 0.008 [ in the workspace; Fig. 4(left) depicts the
solution for tracing a circular path for the end effector;

(iv) keep the middle segment horizontal: by specifying the target zg = 0 and pg = 0.01.
Fig. 4(middle) reveals that this constraint can not be met in all cases. By setting pg to only
a small value, as a “soft goal”, the accuracy of the trajectory is not compromised (see also
below);

(v) approach vertically: after specifying 19 = 0, p1o = 0.01, Fig. 4(right) shows the strobo-
scopic tracking result.

For these different cases we do not need different networks, instead on single PSOM can be
utilized. If one anticipates useful target functions, the embedding space can be augmented in
advance, enabling to construct reconfigurable optimization modules. They are later activated
on demand and show the desired performance. In conflicting situation, e.g. the distal reaching
positions in the last example, a meaningful compromise is found. As shown in [7], the input
selection coefficients can be made dynamical p, = p,(t) during the iteration process. This
enables to formulate priorities of goal functions, e.g. a second rank goal is satisfied as far as

Figure 4: Tracking a point in an horizontal circle with a 4 DOF manipulator, using a 5x5x5x5 PSOM
and three different extra target functions to resolve the redundancy problem: (left) with maximal simi-
larity of the last two joints; (middle) with horizontal middle arm segment; (right) with vertical distal arm
segment — as far as possible (see distal positions).
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the first rank goal (the position goal) is entirely within its solution space.

5 Discussion and Conclusion

We presented the PSOM as versatile building module for learning continuous, high-dimensional
mappings. As highlighted by the robot finger example, the PSOM draws its good generaliza-

tion capabilities from curvature information available through the topological order of only a

few reference vectors {wa }. This topological information can be learned by Kohonen’s SOM

learning rule, or — can be incorporated — if it is known apriori. In many robotic applications,

the latter case can be realized by structured sampling of training data — often without extra

cost.

The input selection mechanism enables to add further, parameterized target functions. Those
can be utilized to resolve e.g. redundancy problems which arise when the primary goal leaves
a continuous solution space of possible alternatives. Here the PSOM offers to build a battery
. of optimizer modules which can be learned within the same continuous associative memory.
" When they are activated, they can influence the best-match search in the desired manner.

This associative mapping concept has further attractive properties. Several coordinate spaces
can be maintained and learned simultaneously (as shown in Fig. 3). This multi-way mapping
capability solves, e.g. the forward and inverse kinematics with the very same network. This
simplifies learning and avoids worries about inconsistencies of separate learning modules. As
pointed out by Kawato [1], the learning of bi-directional mappings is not only useful for the
planning phase (action simulation), but also for bi-directional sensor—motor integrated control.
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