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Abstract. A dynamic recurrent neural network model is discussed,
which presents two types of adaptive parameters : the classical weights

between the units and the time constant associated with each artifi-
cial neuron. This dynamic neural model with recurrent connections can

deal with time-varying input and output tasks in nontrivial ways. It
is successfully used for linearising a subsonic electropneumatic acoustic
generator, that is demonstrated to be an efficient but nonlinear acoustic
generator.

1. Introduction

Control theory deals with the process of influencing the behaviour of a dynam-
ical system so as to achieve a desired objective. The objective is in general to
maintain the output(s) of a system (e.g. altitude of an aircraft, glucose level
in blood, ...) around prescribed constant levels (regulation) or to track pre-
determined time functions, e.g. the trajectory of a rocket in space (tracking or
servo-control). The control of linear time-invariant systems was widely developed
in the last decade and design methods are now well established. Linear models
are in general not adequate for modelling nonlinear systems, and although much
effort has been produced on the mathematical properties of nonlinear systems,
very few procedures currently exist for designing controllers for such systems.
This paper discuss the control of a subsonic electropneumatic acoustic generator.
Dynamic recurrent neural networks are shown to be quite efficient in controlling
these highly nonlinear systems. The paper is arranged as follows. Section 2
deals with the architecture of recurrent networks, whereas Section 3 is devoted
to a brief presentation of the subsonic electropneumatic acoustic generator. The
method used for controlling this generator is discussed in Section 4, and last
section presents and discuss the results achieved.

2. Recurrent neural models

Considerable efforts were made in the past few years in exploring the theory,
the architectures and the applications of artificial neural networks for system
identification and control. These efforts were essentially focused on feedforward
networks, which were shown to be powerful tools for approximating functions,
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for executing classification tasks or to act as an associative memory. Feedfor-
ward neural networks essentially perform tasks that can be considered as static :
recognition of characters, patterns, images, sequences, etc. Feedforward net-
works merely transform representations. The real power of these parallel dis-
tributed representation networks is to select vector representations that embody
the desired topological relationships. Problems solved by feedforward networks
have a common constraint : they are temporally independent, i.e. the “what”
of current input unambiguously determines the current output independently of
“when” it occurs.

A class of neural networks known as recurrent neural networks is often brought
to bear in situations for which time is the important parameter. In recurrent
networks, the current activation of the network not only depends on the current
input of the system but also on previous inputs. These models exhibit important
features not found in feedforward networks, including attractor dynamics and
the ability to store information for latter use.

The neural model considered here works in continuous-time space and each
neuron-like unit is governed by the following equation [6] :
dy;

e ) v o= Tou W

where y; is the state or activation level of unit i, F(a) is the squashing function
(sigmoid-like function) and z; is the total input of the neuron. The model
presents two types of adaptive parameters : the classical weights between the
units and the time constants T;. These ones act as relaxation processes. The
correction of the time constants is included in the learning process in order to
increase the dynamics of the model. It was indeed demonstrated that these
adaptive time constants have a positive influence on the network frequential
ﬁhaviour, on its dynamical features and on its long-term memory capacities [3],
4].

The network consists of a series of neurons possibly organized in layers. All
the possible connections are allowed (feedback, feedforward, self connection and
even feedforward and feedback connections between two identical neurons).

Such a network can be trained using a learning algorithm called Time-Dependent
Recurrent Backpropagation [4].

3. Subsonic electropneumatic acoustic generators

Electropneumatic acoustic generators are de-
vice which operate by the release of com- Plenum
pressed air through an aperture, the area of chamber | " sout
which is made to vary with time. The device Py 0
considered in this paper is shown on Figure 1. % atm
It consists of a plenum chamber that is sup-
plied with compressed air and that is sep-
arated from the source output section by a _. e e
valve that modulates the airflow. The move- 8¢ 1: Simplified model of thf
. . electropneumatic transducer as sug

ment of this valve is controlled by an electro-

. gested by Meyer [5]
dynamic shaker.

Depending on the Mach number M; at the throat, the device is said to be sonic
(M = 1), or subsonic (M; < 1). Subsonic sources were studied in [2] and [1],
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and were demonstrated to be one order of magnitude more efficient than common
electrodynamic loudspeakers. Moreover, unlike these loudspeakers, electropneu-
matic generators are, because of their mechanical design, able to resist extreme
environments (hot, humid, corrosive, ...). Under some assumptions (the most
important being that the system is output memoryless), the fundamental equa-
tion of subsonic sources can be written as follows [1] :

Ai(t) [Cq (po—p2(t))
Ay P

uz(t) = (2)

where uy(2) is the particle velocity at the source output, 4, (t) is the instanta-
neous value of the throat area, A, is the radial area of the source output section,
Po is the pressure in the plenum chamber, py(t) is the acoustic pressure at the
source output, p is the density of air and Cy is the discharge coefficient of the ori-
fice formed by the valve, that was experimentally demonstrated to be reasonably
constant and equal to 2 throughout the cycle of operation of the source.

Equation (2) clearly shows that provided that the pressure ps (t) at the source
output is close to the plenum chamber (which is achieved when the source sees
an acoustic load resistance R; large compared to the source internal impedance),
the source behaves nonlinearly. This nonlinear behaviour is even more apparent
in equation (3) [1] that shows that the acoustic pressure at the source output
dp2(t) is nonlinearly related to the throat area :

A + 04, \/2([70 ~pa —0p2) (3)

Jpz(t) = A2R2l: Az P — Uz

Equation (3) was directly derived from equation (2), writing all the time-varying
quantities as py = Py + 0p2; uz = g + duy; A; = A; + §A;, where, for example,
P2 is the average value of p, and dp, is the time-varying pressure at station 2.
Equation (3) gives the solution of the direct problem, since it allows to compute
the acoustic pressure variations dps(t) from the throat area variations §A; (t).
For control purposes, what must be assessed is the throat area variations required
for producing the desired acoustic pressure waveform at the source output. The
following nonlinear equation must be therefore be solved, that represents the

tnverse problem :

- A \/%“(I%*ﬁz) + é’%ﬁ
A + dA(8) = = (4)
V& (0 - 52— (1))
Note that when solving this equation, one must account for two constraints :
Al (t) Z 0 and Al (t) S Al,maz (5)
where A1 e is the area of the valve when it is fully open.

The mean pressure p, in equation (4) can be computed using the assumption
according to which the system is output memoryless : if A;(t) = A;+8A4;(t) =0,
then py(t) = patm, where p,ipm, is the atmospheric pressure. After a litle algebra,
mean pressure p is shown to be the solution of the following equation :

9 2
p2 _ Cd T2 Cd patm patm 12 Cd pO
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’I‘his equation in P, has two solutions; the one we are interested in is such that
D2 > Patm-

Analytically solving equation (4) is not a trivial task, hence the interest of using
a neural network for solving the inverse problem.

4. Methods

The neural model used is based on the prin-
ciple of the inverse identification (Figure 2).
The objective is to identify the system whose

Subsonic
Source
output is the throat area of the subsonic sour-
ce and whose input is the desired pressure

identification
(target). The input signal of the neural de-

vice is thus this desired acoustic pressure (in Figure 2: Inverse identification prob-
Pa) and the output signal is the throat area. lem

The interest of inverse identification is that it

provides the command signal to be applied to the generator in order to get the
desired acoustical output : the controller exhibits an open-loop structure and
therefore avoids instabilities.

The solution of an inverse identification problem is not always unique. To il-
lustrate this problem, consider for example a particular direct transformation
f(u) whose inverse transformation f ~![f(u)] leads, for a particular point flu*),
to three different solutions : u;, uy and wus. Using a dynamic system for the
inverse identification is a good way for resolving the potential ambiguity, i.e. for
chosing the right possibility, since such a system learns the temporal evolution
of the inverse transformation.

For identification purposes, a fully-connected recurrent neural networks was
used. The training phases consisted in the identification of different couples
of signals (desired pressure as output and surface area of the valve as input)
computed by solving equation (4). Several other couples of signals were also
generated to investigate the efficiency of the training phase. These signals last
for 0.05 s and used a time-step of 0.2 ms (i.e. 250 points). This guaranteed that
at least five periods were present in every sampled signal. Moreover, a time-step
of 0.2 ms satisfied the Asymptotic Consistency Criterion (see [4]).

Al p 2(')

Error

5. Results

The inverse identification of the subsonic generator was simulated first for sinu-
soidal acoustic pressures between 50 Hz and 400 Hz. Different mean values Ay
of the throat area were chosen.

Two different sets of data were generated : one for the training of the network
and the other one for the validation of the identification. The values of A, for
the training process ranged from 0.4 to 4.0 cm? by step of 0.4 cm? and for the
validation process from 0.2 to 3.6 cm? by step of 0.4 cm?.

Conditions were as follows : atmospheric pressure Patm @ 102,100 Pa; plenum
pressure py = patm+1,100 Pa; air density p : 1.2 kg/m?; A, : 16 cm?. After
several tests, we found that the best architecture for the network was a 20 fully-
connected neuron model.

The results show that after the training phase, the network is able to generalize
for unknown values of A; (see Table 1). For illustration purposes, Figure 3(left)




ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 67-72

Training sef Validation set
# RMS FError # RMS Error
1 6.41 1071 1 6.47 107
2 6.29 10~¢ 2 6.35 10~
3 6.12 10~4 3 6.21 10~%
4 5.92 10~4 4 6.03 10~
5 5.65 10— 5 5.79 10—
6 5.31 10—4 6 5.49 10—
7 4.89 101 7 5.11 10—
8 432 10~4 8 4.62 10~
9 3.62 10~ % 9 3.99 10—¢
10 2.72 1074 10 3.21 10~
Mean | 5.12 10~ Mean | 5.32 104

Table 1: Root mean square errors for the ten different training and validation signals. The
last line gives the mean error over the 10 signals of the set.
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Figure 3: Left : comparison between the throat area A,(t) generated by the network
(dashed line) and the desired one (solid line) for the validation set 1. Right : comparison
between the output pressure resulting from the DRNN command (dashed line) and the

desired one (solid line) for the validation set Nr 1, A4; = 0.2 cm?2.

depicts a comparison between the throat area A, (t) generated by the network
(dashed line) and the desired one (solid line) for the validation set 1.

Using the command signal A; (t) generated by the network, the direct problem
was solved to get the output pressure. Figure 3(right) compares the pressure at
the output of the generator (i.e. the generated sound). Harmonics in this signal
were at least 20 dB below the fundamental which shows that the system is quite
efficient in producing sinusoidal acoustic pressures.
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We also tested the robustness of the
dynamic recurrent model to generate
periodic but nonsinusoidal signals. For
this test, the network was trained with
ten different signals based on differ-
ent combinations of sinusoidal signals
whose fundamental frequencies were 50
Hz, 100 Hz, 150 Hz. The network was
then validated with a signal based on a
combination of sinusoidal signals with
fundamental frequencies of 75 Hz and
125 Hz. Figure 4 shows the compar-
ison between the output pressure re-
sulting from the DRNN command (d-
ashed line) and the desired one (solid
line) for this validation signal. The
shape of the acoustic pressure is rea-
sonably close to the desired pressure.
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Figure 4: Test of robustness of the sys-
tem.This plot shows the comparison between
the output pressure resulting from the DRNN
command (dashed line) and the desired one

(solid line).
6. Conclusion

Dynamic recurrent neural networks can provide a fruitful method for control-
ling complex temporal systems. The success of the neural computing solution
can be judged from the previous results: the network converges to a plausible
dynamical behaviour and different validation tests prove the efficiency of the con-
trol. Moreover, the system is able to extrapolate command signals with various
fundamental frequencies.

Furthermore, due to their dynamical features and to their features, dynamic
recurrent neural networks can be applied to several other research fields. We
are currently studying some other applications of dynamic neural networks in
the fields of mathematics (such as interpolation tasks i.e., for the forecasting of
stock market value) and of engineering. '
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