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We introduce the Learning Feed-Forward Control configuration. In this
configuration, a B-spline neural network is contained, which suffers from the
curse of dimensionality. We propose a method to avoid the occurrence of this

problem.

1 Introduction
In order to design a conventional feedback controller, like a state-feedback
controller, detailed knowledge of the process under control is required. However, in
many cases an accurate process model can only be obtained with considerable effort,
time and cost. Modelling difficulties are likely to arise with processes that suffer
from: a) uncertainty in process structure or in many parameters, b) strong non-
linearities, or c) time-variance in process structure or in many parameters. With
these kinds of processes, conventional controllers and even non-linear or adaptive
controllers can show poor performance because their design relies heavily on the
availability of an accurate process model. Even when a reasonable accurate model is
available a-priori, feedback controllers often suffer from a trade-off between high
performance and robust stability.
Though feedback controllers are very capable of compensating disturbances, with
good process knowledge available feed-forward control could be given preference
over feedback control because feedback controllers are basically error driven. A feed-
forward controller may be able to prevent control errors, because its output is based
on the reference, instead of the error signal. When no accurate process model is
available, learning feed-forward (LFF) controllers should be considered. LFF
controllers hardly suffer from the mentioned trade-off and are capable of improving
the performance of a feedback control system considerably [9]. They are not
necessarily based on a physical process model and are potentially able to learn and
reproduce an ‘arbitrary’ continuous function to any desired degree of accuracy, even
if it concerns non-linear and/or time-variant functions.
In this paper, we propose a method to deal with the curse of dimensionality [1, 4, 5]
in the context of LFF. We first introduce the LFF configuration in section 2. Next, we
discuss the B-spline network that is contained in this configuration and formulate the
problems that are brought about by the curse of dimensionality. In section 4 we take
a look at ASMOD [4, 5, 1], which is an effective way to avoid the curse of
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dimensionality when doing neural modelling. We show how the same underlying
concept can be exploited in the context of LFF in section 5.

2 Learning Feed-Forward Control

Fig. 1  Learning Feed-Forward controller configuration

We focus on learning control of motion systems, i.e., systems in which an end
effector that is contained in the plant (P in Fig. 1) has to track a reference path. The
learning controller considered here consists of a feedback (FB) controller and a
learning feed-forward component (LFF) in parallel, as shown in Fig. 1. The feedback
controller is implemented as a regular P(I)D controller and is designed for robustness.
The LFF component is chosen to be implemented as a B-spline network because of its
ability to combine fast learning with performance at small computational cost [2].
The learning mechanism is based on the output of the feedback controller, thus LFF
control can be considered a variant of the Feedback Error Learning structure [6].
That is, learning is done in a closed loop, and care has to be taken in order to
guarantee convergence. Unlike ‘standard’ Feedback Error Learning, the learning
component in LFF is indexed by the reference path, and not by measurements of the
actual path of the plant. An important reason for doing this is that the reference path
is noise-free. Several successful applications of learning feed-forward control have
been realised, such as:
– Path tracking for an autonomous mobile robot [9];
– Accurate positioning with a linear motion motor system [7];

3 B-spline Network
The learning component of the studied learning controller is implemented as a B-
spline network [2]. B-spline networks are part of a class of networks that employ
basis functions,  commonly organised in a lattice structure, to approximate a
continuous, possibly multidimensional, function. They can be compared to, e.g.,
Radial Basis Function (RBF) networks, which use Gaussian functions as their
elemental basis function [8].
B-spline networks with more than one input employ multidimensional B-spline
functions, formed from the tensor product of univariate basis functions, to obtain
interpolation in all dimensions. With multidimensional networks, the network output
is calculated as follows:
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where k is the number of inputs, n1...nk is the number of splines defined on inputs
1...k, µi ik1K is the function evaluation of the multi-dimensional B-spline function

(the membership) and wi ik1K are the network weights.

Compared to Gaussian functions, which are often used in fuzzy logic systems, B-
spline functions have a compact support or spline width. Therefore, only p network
weights instead of n (p << n) with Gaussian functions have to be updated per
training epoch, p being the order of the spline functions. This property implies a
considerable reduction of computational effort when employing B-spline networks in
control applications. By choosing second-order B-splines on one input, linear
interpolation between adjoining spline knots, i.e. the points with membership value
1, is obtained, resulting in a piece-wise linear network output function.
To adapt the weights, the back-propagation learning rule is applied:

 w w e xk k+ = + ⋅ ⋅1 η µ ( )  (2)

with η learning rate;
e learning signal.

In the applied controller configuration (Fig. 1) either the control error e or the PID
output signal can be chosen to serve as a learning signal for the B-spline network.
Taking the PID output as a learning signal will result in faster learning behaviour.
Just as with RBF networks or other networks that possess a lattice architecture, the
principal drawback of multidimensional B-spline networks is that the number of
network weights explodes exponentially with the dimension of the input space if the
basis functions are chosen uniformly. If ni basis functions are used along each

dimension, the number of network weights is given by n ntot i
i

k
=

=
∏

1
. Since accuracy

considerations may require large values of ni, e.g. when a highly non-linear function
is to be mapped, these networks are impractical when the number of inputs k is large.
With learning networks, this so-called curse of dimensionality brings about the
following problems [1, 9]:
1. Large number of network weights; if the non-linear components of the process

dynamics are strong, a highly non-linear function has to be mapped by the B-
spline network. A network lattice that is able to map these non-linearities
accurately would take up a great deal of computer memory. In practice, memory
resources are limited. Therefore, network complexity and mapping accuracy
have to be traded off against each other.

2. Large training sets; when learning a certain trajectory, only the network weights
indexed by the reference path are updated. With a high number of network
weights, a very large training set would be required to train the network for
every possible motion through the input space. This will lead to large training
times if the network is trained on-line, i.e. during control.
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3. Poor generalising (interpolating) ability; the compensation of a non-linearity
may require narrow splines for reasons of accuracy, but unfortunately, with
narrow splines very different network output signals may occur with trajectories
that are ‘alike’. Hence a large amount of data would be needed to fully train the
network. With lattice-based networks, this trade-off between network resolution
and generalising ability is inevitable.

In the next section, the consequences of these problems for the design of learning
feed-forward controllers will be focused on.

4 Avoiding the curse of dimensionality through parsimony
When confronted with the curse of dimensionality, data reduction and parsimonious
modelling are becoming important issues in the design of multivariate learning
networks. According to the principle of parsimony, the best models are obtained
using the simplest possible, acceptable structures that contain the smallest number of
parameters [1]. In general, parsimony is obtained by either of the following
strategies:
I. Reduce the number of input axes (network dimensions);
II. Reduce the number of basis functions, i.e. make them as wide as possible;
III. Locate centres of basis functions such that the smoothness of the required

mapping is best approximated.
A technique that has shown to be able to construct parsimonious B-spline networks
is Adaptive Spline Modelling of Observational Data (ASMOD) [4, 5, 1]. This
technique makes use of the ANalysis Of VAriance (ANOVA) representation of a
function f ( )⋅ , with y f x= ( ) :
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where fi (⋅), fi,j (⋅), etc. represent univariate, bivariate, etc. additive components of f
(⋅). ASMOD is concerned with automatic iterative construction of B-spline networks
according to the ANOVA representation on the basis of observational data (a training
set). ASMOD is restricted to the creation of univariate and bivariate subnetworks, i.e.
subnetworks with no more than one or two inputs.
The ASMOD algorithm constructs a network model by adding additional univariate or
bivariate subnetworks and inserting new spline knots amongst the set of univariate
knots of the existing model (self-organisation). It is also possible to delete basis
functions (pruning), split bivariate subnetworks into univariate models and remove
completely redundant inputs (strategies I and II). The refinement process stops if
adequate approximation (in terms of MSE) is achieved. ASMOD automatically
generates parsimonious models by decomposing high-dimensional input spaces into
several low-dimensional subspaces. Therefore, it is an advantageous technique in
case a high-dimensional data set and no information about the underlying process
structure is available. The ASMOD algorithm is not concerned with optimal placement
of the B-spline knots (i.e. strategy III).
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Unfortunately, the refinement process of ASMOD starts with networks containing one
spline only, and cannot be initialised with a prototype network. Every single
combination of submodels, amount of basis functions and even order of B-spline
functions is evaluated in the iteration process subsequently. This makes ASMOD a
computationally intensive algorithm for highly non-linear data sets such as in our
applications. Secondly, ASMOD is concerned with neural modelling from given data,
whereas in our context the learning component needs to approximate an unknown
control signal. These points make straightforward application of ASMOD for our
purposes impossible. However, the basic concept, namely exploiting the ANOVA
representation that might be contained in the network, is very useful.
With mechatronic systems, completely automatic identification an ANOVA
representation is usually not necessary, as some knowledge about the process
structure is available in many cases. This knowledge may be sufficient to perform an
educated guess about, e.g., the desired network structure or the amount of splines on
each network input domain. This idea is pursued in the next section.

5 Learning feed-forward controller based on additive networks
In practice, a-priori mechatronic plant knowledge may include one or more of the
following properties:
1. Relevance of variables; the plant dynamics is known to be dependent on

position, velocity and acceleration mainly;
2. Dependency on input variables; a part of dynamic behaviour can be described by

univariate functions only, however, some components depend on more than one
input variable.

3. Degree of non-linearity with each input; the shape of non-linearities may be
known qualitatively for some effects; e.g. in a motion system on the velocity
domain due the friction can be expected the have a Stribeck curve;

On the basis of this knowledge, initial guesses for the network inputs, the network
structure, the number of B-spline functions or the B-spline distribution for each input
can be made. An ASMOD-alike model decomposition is carried out ‘by hand’ in order
to obtain network parsimony. However, training experiments have to be designed
with care in order to guarantee that a particular effect is stored in the appropriate
network.
Consider for example a linear motor motion system [7]. The dynamic behaviour of a
linear motor is known to contain the following elements: force ripple, Coulomb
friction, translator mass, and possibly viscous friction, stiction and reluctance. Apart
from reluctance, each of these elements depends on only one variable of the reference
path (xr, vr, ar), and all effects result in a force that ‘disturbes’ the functional driving
force. Hence, additive univariate subnetworks can be applied to compensate for the
system dynamics. On the basis of this qualitative process knowledge, the controller
configuration of Fig. 2 can be built. Ideally, the forces needed to compensate force
ripple (a position related phenomenon) are learned by the position network, and the
frictional behaviour is learned by the network that has velocity as an input. The
forces needed to accelerate the translator are to be compensated by the acceleration
network.
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Fig. 2    Network structure used with linear motor, model parsimony and data reduction are
obtained by employing additive subnetworks, which are labeled after their input.

The LFF was constructed by subsequently adding univariate networks, starting with
the network designed to compensate for non-linearities expected to form the largest
part of dynamics. With the linear motor system, the first network to be trained was
the position network, because force ripple is the largest non-linearity. After the
position network has been fully trained, a velocity (friction) network and an
acceleration network were added and trained simultaneously. Experimental
evaluations have shown that indeed this method works and helps to resolve the
problems mentioned above [3].
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