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Abstract. This paper presents two local methods for the control of
discrete-time unknown nonlinear dynamical systems, when only a lim-
ited amount of input-output data is available. The modeling procedure
adopts lazy learning, a query-based approach for local modeling inspired
to memory-based approximators. In the first method the lazy technique
returns the forward and inverse models of the system which are used to
compute the control action to take. The second is an indirect method
inspired to adaptive control where the self-tuning identification module
is replaced by a lazy approximator. Simulation examples of control of
nonlinear systems starting from observed data are given.

1. Introduction

The idea of local memory-based approximators as alternative to global models
originated in non-parametric statistics to be later rediscovered and developed in
machine learning (Bottou & Vapnik, 1992). Recent work on lazy learning (a.k.a
just-in-time learning) gave a new impetus to the adoption of local techniques for
modeling (Atkeson et al., 1997a), and control problems (Atkeson et al., 1997b).
In the lazy learning approach, the value of an unknown mapping is estimated
giving the whole attention to the region surrounding the point ϕq where the
estimation itself is required. The procedure essentially consists of these steps:
i) for each query point ϕq , define a set of neighbors, each weighted according
to some relevance criterion (e.g. the distance) ii) choose a local regression
function f(·) in a restricted family of parametric functions iii) compute the
regression value f̂(ϕq). In (Bontempi et al., 1997) we extend the classical
memory-based approach with a method that automatically selects the local
model configuration. To this aim, we apply tools and techniques from linear
statistical analysis to nonlinear modeling problems. The most relevant one
is the PRESS statistic (Myers, 1990), a simple, well-founded and economical
way to perform leave-one-out cross validation (Efron & Tibshirani, 1993) and
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therefore to assess the performance in generalization of local linear models.
Due to its short computation time which allows its intensive use, it is the key
element of our approach to modeling data.

In this paper we present and compare two methods for discrete-time control
based on the local linear description returned by the lazy learning model. The
idea of employing linear techniques in a nonlinear setting is not new in control
literature but had recently a new popularity thanks to methods for combining
multiple estimators and controllers in different operating regimes of the sys-
tem (Murray-Smith & Johansen, 1997). Gain scheduling (Shamma & Athans,
1992), fuzzy inference systems (Takagy & Sugeno, 1985) and local model net-
works (Johansen & Foss, 1993), are well-known examples of control techniques
for nonlinear systems inspired to linear control.

The first method we propose is an example of gradient-based control system
which is inspired to neural controllers and combines an inverse with a forward
lazy model to select the control action. The algorithm has been introduced
by (Atkeson et al., 1997b) and applied to a static control task. Here we test
its stability properties on two different dynamic tasks. The second controller is
based on the self-tuning regulator (STR) architecture (Astrom & Wittenmark,
1990) and combines discrete-time conventional control (e.g. generalized mini-
mum variance, pole placement) with the lazy local modeling. The adoption of
linear control techniques allows the local analysis of the closed-loop systems in
terms of stability properties.

In the next section, we will introduce the two control algorithms. In sec-
tion 3. we will present some simulation results of the control of two nonlinear
systems. Some final considerations are summarised in section 4.

2. Lazy learning for control design

Consider a class of discrete-time dynamic systems whose equations of motion
can be expressed in the NARMAX form:

y(k) = f
(
y(k − 1), . . . , u(k − d), . . . , e(k − 1), . . .

)
+ e(k), (1)

where k denotes the time, y(k) is the system output, u(k) the input, e(k) is a
zero-mean disturbance term, d > 0 is the relative degree and f(·) is some non-
linear function. Let us assume we have no physical description of the function
f(·) but a limited amount of pairs

[
u(k), y(k)

]
is available.

2.1. The lazy learning gradient-based controller

The idea of the lazy gradient-based controller is to solve a one time-step horizon
control problem as an optimization problem. Suppose that the system (1), is
required to reach at the next time time step a reference value yref (for clarity,
we assume d = 1). The lazy model can be used to predict the response of the
system to the control action ui:

ŷui(k) = f̂
(
y(k − 1), . . . , ui, u(k − 2), . . . , e(k − 1), . . .

)
. (2)
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In addition, the linearization returned by the local description provides an
estimate of the gradient of the system output dŷui(k)

dui with respect to the control
action (Atkeson et al., 1997a). The control problem can therefore be formulated
as a constrained gradient based optimization problem:

uopt = arg min
ui

J(ui) = arg min
ui

(yref − ŷui(k))2. (3)

In order to speed up the optimization resolution, the algorithm can be initial-
ized with the value returned from the model of the inverse dynamics:

u0 = f̂inv

(
yref , y(k − 1), . . . , u(k − 2), . . . , e(k − 1), . . .

)
. (4)

The lazy gradient-based control algorithm can be described by the following
steps to be repeated at each sampling period:

1. Initialization of the algorithm with the value u0 provided by the inverse
mapping (4).

2. Prediction of the outcome ŷui of the system forced by the input ui and
computation of the gradient vector dJ(ui)

dui .

3. Updating of the control sequence ui → ui+1. The optimization step is
performed by a constrained gradient based algorithm.

4. If the minimum has been reached (ui = ui+1) goto 5 else goto 2.

5. Control action execution.

6. Updating of the database.

2.2. The Lazy learning self-tuning controller

This approach combines the lazy learning identification procedure with control
techniques from adaptive linear control (Astrom & Wittenmark, 1990), e.g.
minimum-variance and pole-placement. Let us consider a linear discrete-time
process described in input-output form by the equation:

A(z)y(k) = z−dB(z)u(k) + C(z)e(k), (5)

and suppose we want to regulate it to yref = 0. The MV control problem
can be stated as finding the control law which minimizes the variance of the
output. The MV controlled closed loop system is stable only if B has all
of its roots inside the unit circle (minimum phase). However, more complex
formulations are available in the case of a tracking problem or in the case of non
minimum-phase systems (Generalized MV or GMV). Pole placement design is
an alternative technique to deal with non minimum-phase configurations. The
procedure requires first to choose the desired closed loop pole positions and then
to calculate the appropriate controller. Both these design techniques require a
model linearization in the form (5). In our approach this is returned at each
time step by the lazy learning model. In detail the control algorithm can be
described by the following steps to be repeated at each sampling period:
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Figure 1: Gradient-based control: a) reference (solid) and system (dotted)
outputs b) control action

1. Linearization of the function f(·) computed by the lazy learning algo-
rithm.

2. Derivation of the polynomials A, B, C of (5) from the linearized model.

3. Design of a MVG/PP controller for (5) which satisfies the required prop-
erties (stability, accuracy, speed . . . ) of the closed loop behavior.

4. Computation and execution of the control signal.

5. Updating of the database.

3. Simulation studies

3.1. A lazy gradient-based control example

In this simulation we consider the control of the plant described by the example
11.2 in (Narendra & Li, 1996). We use the control algorithm described in
section 2.2.. The system is represented in the minimum-phase input-output
form y(k + 1) = f

(
y(k), y(k − 1), y(k − 2), y(k − 3), u(k)

)
. We use an initial

empty database which is updated all along the identification. The system
is controlled for 1300 time steps. The plot in Fig. 1a shows the model and
the system output in the last 300 points, while the plot in Fig. 1b shows the
control action. These results outperform those obtained by (Narendra & Li,
1996) after 2,000,000 steps of on-line adjustments and a complex architecture
(4-layer feed-forward neural network).

3.2. A lazy self-tuning control example

In this simulation we consider the control of the nonlinear SISO system de-
scribed by the difference equation:

y(k + 1) =
y(k)y(k − 1)y(k − 2)

(
y(k − 2) − 1

)
u(k − 1) + u(k)

1 + y2(k − 1) + y2(k − 2)
. (6)
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Figure 2: Self-tuning control: a) reference (solid) and system (dotted) outputs
b) control action.

The system is represented in the input-output form y(k + 1) = f
(
y(k), y(k −

1), y(k−2), u(k), u(k−1)
)
. The reference output yref (k) is given by a periodic

square wave. The lazy nonlinear algorithm is not able to control the system
over this reference trajectory. On the contrary, a self-tuning regulator based on
a pole placement algorithm is able to track the trajectory. We initialize the lazy
learning database with a set of 5000 points collected by preliminarly exciting
the system with a random uniform input. The database is then updated on-
line each time a new input-output pairs is returned by the simulated system.
The plot in Fig. 2a shows the reference and the system output , while the plot
in Fig. 2b shows the control action. From the local analysis of the identified
system we have that the system is non minimum-phase (i.e. absolute value of
the zero greater than one) when y is in the neighborhood of y = −1 (e.g. see
the time interval 50− 100). This is indeed the region where the gradient-based
controller fails to control the system by making the feedback loop unstable.

4. Final considerations

We illustrated and tested two control systems, which make an extensive use of
local modeling. The lazy gradient-based control system, inspired by neural con-
trol, makes use of forward and inverse approximations of the system dynamics
to select the control action. Like in neuro-control, properties of stability cannot
be guaranteed in a general case. However, we showed how this approach can ob-
tain performances more accurate than neural networks even using a smaller set
of training examples. The lazy self-tuning architecture adopts a linear control
technique which eases the analysis in terms of stability properties and provides
a useful insight in the dynamic properties of the nonlinear system.

It is worthy noting how in both the approaches we made the assumption
of certainty equivalence. Future developments will focus on how to deal with
parameter uncertainty in local control.
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