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Abstract. This past year has seen great progress in understanding stability and
developing practical applications for new learning control designs, originaly
developed in the neural network area but applicable to a wider class of designs.
However, there is still a big gap between the best designs implemented so far,
and the kind of intelligence or higher-order decision-making capability seen in
mammal brains, and required for multilevel control structures such as the
management of entire factories or battlefields. This paper will briefly cite some
of the prior work, but mainly summarize a new hybrid neural-Al design --
emerging from the underlying mathematics, rather than ad hoc synthesis --
which has the potential to close that gap. The new design draws heavily on
concepts of hierarchy and temporal chunking from Al, and on relational
representation of objects and space, and a fuzzy goal representation.

1. Background: Learning Control, Stability and Applications

Substantial progress has been made in the past year in developing applications,
understanding stability, and improving key subsystems of learning-based controllers
[3]. Considerably more work is needed in all these directions.

In conventional discussions, it is often suggested that neurocontrol is essentially
just an extension of adaptive control, which in turn is seen as the antithesis of H-
infinity or robust control. In actuality, this is extremely misleading.

The most popular form of robust control -- linear Heo control, with no internal
feedback loops in the controller to complicate the stability analysis -- provides high
guarantees of stability, but only under strong assumptions and for limited types of
plant. There are many practical situations where no controller can be designed in this
family, which meet the full range of plausible parameters of the plant. For example,
in building high-performance hypersonic aircraft, a recent study based on modern
H-infinity design tools revealed that the range of controller parameters which could
stabilize the plant when it has a center of gravity as 12 meters did not overlap at all
with the set which stabilizes the plant at 11.3 meters. Even if there are ways to try to
control the center of gravity, one would feel a lot safer if one could also provide a
more reliable control system.[3]

In such cases, common sense tells us that we would be safer and stabler, in
practice, if we could somehow adjust the controlller parameters to reflect what the
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center of gravity actually is. There ought to be some way to use current information
about the center of gravity which is better (in terms of stability) than simply throwing
out that information. In other words, an adaptive control strategy of some kind ought
to lead to greater stability than ordinary robust control. But in practice, industry has
found that this is not true for the kinds of adaptive control available to them today; as
a result adaptive control is far less popular than simple robust control.

Why is it that adaptive control does not seem to have the same advantages in
practice that it ought to have in theory? One reason is that the vast majority of work in
adaptive control -- both classical adaptive control and neural adaptive control -- is
based on minimizing some measure of tracking error one period of time ahead into
the future. Substantial effort has gone into proving stability theorems for that class of
design; however these stability theorems impose very strong assumptions, except in
special cases where application-specific Liapunov functions happen to be known. As
a practical matter, it is very easy to get into an overshoot instability when the proper
direction of adaptation is not known, because the direction of change which reduces
tracking error one period ahead may be opposite to what stabilizes the system many
time periods ahead.

For this reason, the practical industrial applications of neural networks in control
tend to involve methods which minimize error or cost many periods of time ahead
into the future. In a sense, the practical applications found in industry tend to use
more advanced and brain-like designs than the ones which theoreticians write about!
There are two broad classes of design which are popular here: (1) methods which
involve a direct simulation of future time-periods, and an explicit multiperiod
optimization of some kind (e.g. Neural Model-Predictive Control, NMPC); (2)
methods which approximate dynamic programming.

The first class of methods is currently more popular in industrial applications, in
part because it is straightforward to implement, using the details given in [11,ch.8]
and [12,ch.10]. This kind of learning control has been implemented mainly with
neural networks; however, it would be straightforward to use a modified, learning-
based form of fuzzy logic to perform the same task[13]. Usually, if one has the
models and data required for offline learning with neural adaptive control, the
upgrade to [11,ch.8] should be very easy and very effective; it provides an effective
but quick fix to problems involving timing and delays, which are rampant with the
simpler forms of neural adaptive control.

As an example of this approach, representatives of a major US steel company
recently told me that they now use NMPC routinely to control some of their critical
processes, and believe that their competitors do so also (though many details are
proprietary), based in part on [12,ch.10]. Likewise, the first major success of Ford
Research in using learning control to reduce emissions was based on a related
approach (reviewed in [3]).

Ironically, however, the most consistent way to minimize costs over many time
periods does not involve an explicit development of a future plan. Dynamic
programming is the only exact and efficient tool available to optimize into the future
in the general case, when noise or uncertainty is present. This class of methods is also
far closer to what we see in the brain than is NMPC[1,2].

In actuality, the more advanced segments of the nonlinear H-infinity community
have actually been converging with the neural network community in pinpointing
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what is really needed, for maximum stability: i.e. control designs which are based on
solving a stochastic optimization problem, using controllers which are powerful
enough to function over a wider variety of possible plant parameters.

In order to cope with a wide range of possible plants, it is critical that the
controller have the kind of “memory” which allows it to represent implicitly such
variables as “the current center of gravity.” In H-infinity, this is typically done with
“observer” components. In neurocontrol, it is done by using time-lagged recurrent
networks. Either way, one can adapt the resulting complex controller by trying to
minimize some measure of error or cost, in an offline mode, across a wide range of
possibilities for how the plant behaves. I called this strategy “learning offline to be
adaptive online” when I first proposed it in 1990. Ford Research has developed a
more specific approach to implementing this strategy, which they call “multistream
learning” (reviewed in [3]).

Given such a controller, the problem then lies in how to perform the adaptation.
Starting in the 1970’s [14], I have developed a family of designs -- initially
implemented as neural networks -- for Approximate Dynamic Programming (ADP),
which have since been used, extended and popularized by a number of researchers. In
effect, the goal of these methods is to approximate the Hamilton-Jacobi-Bellman
equation as accurately as possible, subject to constraints on computational effort and
hardware.

As with NMPC, the main implementations have been based on neural networks
so far, but this is not required by the mathematics. Likewise, both offline learning
and online learning are possible.

As a practical matter, different applications require different degrees of attention
to stability versus other measures of performance, In the ADP approach, this is left
up to the user.

It should be noted that the “J” function approximated by these methods is also
guaranteed to be a Liapunov function. Thus, to the extent that the approximation is
accurate enough, these methods could be seen as a way of constructing a Liapunov
function for ordinary one-period ahead adaptive control.

2. ADP Versus Mammalian Intelligence

By 1995, several groups of researchers had finally implemented neural network
designs which met certain basic criteria for what a brain-like intelligence should look
like[1]. These designs were intended to be able to learn “any task™ involving goal-
directed behavior over time, without prior knowledge of the task. In technical terms,
such designs have been called “model-based adaptive critics” or model-based
approximate dynamic programming (ADP). They have sometimes been classified as
a type of reinforcement learning system. They permit much faster learning than more
primitive forms of reinforcement learning, at least when there are moderate or large
numbers of continuous variables which need to be controlled.

The engineering benefits of such designs have become increasingly clear over
the past few years. By now ten groups have successfully implemented such designs
[2,10}. The strengths and weaknesses relative to conventional designs, in terms of
stability, etc., are becoming better understood [3]. In formal terms, these designs
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provide a capability for optimization over time in uncertain noisy nonlinear
environments; that, in turn, permits systems to learn how to track a narrow desired
trajectory or performance envelope, which is especially useful when trying to operate
highly dynamical nonlinear plants.

In many engineering applications, neural networks are now used as part of a
straightforward extension of ordinary adaptive control. In effect, matrices are simply
replaced by neural networks in the same designs. In most cases, controllers are
adapted so as to minimize square error in tracking at the next sampling time (t+1),
based on the use of derivatives propagated through some kind of plant model, fixed or
adapted. But neural net controllers using this approach have essentially the same
problems with delays and nonminimum phase plants that ordinary adaptive
controllers have. Using the exact same training examples, controllers designs and
models, one can usually achieve better performance and stability simply by taking a
different approach to training, based on multiperiod optimization. The explicit,
minimum cost n-period look-ahead approach is explained in tutorial fashion in
chapter 8 of [11] (which also contains the original papers on backpropagation from
1974 and 1981). For a more sophisticated and complete discussion, see chapter 10 of
[12]. This approach is not as popular in the journals as the ordinary adaptive
approach, but it accounts for a larger share of the success in applications in
industry.[3].

In 1970 or so, when I first developed the theory behind the model-based ADP
designs, I hoped that they would be enough to describe at least those aspects of
higher-order intelligence which exist in the mammalian brain. This is not the same
thing as explaining consciousness in the minds of humans. In order to understand
consciousness in the minds of humans, one must also address issues such as symbolic
reasoning, quantum computing and the soul, etc.; although I do have ideas about those
subjects [4], they are beyond the scope of this paper. In my view, a scientific
understanding of the mammal-brain level of intelligence is a prerequisite to a truly
deep understanding of those more advanced levels of intelligence[2,4]. Indeed, the
new design to be mentioned here does begin to provide some ideas about the deep
structure underlying verbs, nouns, and adverbs, at the very least.

Nevertheless, by 1996 [1], it was apparent that these advanced designs still
had two major deficiencies -- major gaps between the kinds of learning capability
they provide, and the kind which exists in the mammalian brain.

First of all, in order to learn many difficult planning problems, such as
generalized spatial navigation, it would be necessary to “fill in the boxes™ in these
designs with a certain type of slow but powerful neural network, the “SRN.” [5,6]. To
explain how the brain also achieves high-bandwidth control of muscle movements,
one then needs to assume a “two brains in one” master-slave design described in [1].

Second, and more seriously, in order to learn how to “see” far into the future,
the underlying learning rules have to be changed, to allow some sort of “temporal
chunking.” The usual critic adaptation rules train a network at time t based on
information about time t+1. One can do far better by allowing the use of t+T, at times,
where T is a larger time interval. But how can one do this? My concerns about this
were magnified by the growing evidence from neuroscience that the basal ganglia are
a crucial part of higher-order intelligence, and that they perform something very
similar to task-based planning in AI[1].
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A careful analysis of the mathemaucs of wmporal chunking i ADP forced me
o the development of an hierarchical task-based design, made up of “decision
blocks.” An international patent disclosure was filed on this design on June 4, 1997,
through Scientific Cybernetics, courtesy of Sam Leven. The main specification
section of that disclosure is being published in [7]. Of course, that paper mainly deals
with global implementation details. (The disclosure also required 300 pages of
additional papers -- mainly papers previously published - in order to describe some
of the subsystems.) In order to complement that discussion, another paper is being
published very soon [2] which summarizes the preceding history and the intellectual
strategy here in great detail. It expands on the implications for neuroscience, stressing
the empirical data on the mammalian brain.

I am very grateful to Alex Meystel for drawing my atiention to [8] , soon after
the publication of [2]. This paper made me appreciate more seriously a third
limitation of the earlier model-based ADP systems -- their treatment of space. In a
formal sense, this problem can be handled without changing the higher-level
architecture of the model [2,7]. It is a subsystem issue, at least for the mammalian
level of intelligence. (But mammals do not have to coordinate 100 quasi-independent
robotic  pieces of themselves spread out over an acre!) Nevertheless, the required
change in neural network subsystems is very large, and has major implications for
neuroscience [2] and engineering applications|7]. It is particularly relevant to tasks
like predicting the behavior of molecules or controlling complex networks like heat
exchangers, precoolers, fuel processors, utility grids, etc.

3. A Few Details

Deuvision N
A
: ocal
Moditiers c (p{A) result} Qo Gy, W, [°
Un Local Action or Decision Net h
. TOCHASTIC p(A) Predictor
- . o inte From:
+ L Higher
a(A} * Blocks
entry states PlA)
Mats: J*, g™} posi-exist slales
Met: J&+

Figure 1. Strucwire ol a Decision Biock

Figure 1 1s a reduced version of & figure which appears i [2], It summarizes the
structure of a “decision block.” In this theory, the upper level of the mammalian brain
{excluding the higher motivational systems) is essentially made up of a library of such
decision blocks. The blocks are formally distinct, but in practice (as in the brain) they
may share hidden nodes, and must share a common estimated state vector R.

The task of each decision block is to decide which lower-level decision blocks 1o
actuivate. This 1s a crisp, discrete decision. (In [1], I speculated that the activation
might be fuzzy instead of crisp; however, because of the problem of local minima,
and the need for rational learning, this did not turn out to be promising.)
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For the lowest level block, the decisions are really just actions u sent to the
lower brain. Decision blocks may be thought of as “active verbs.” The arrangement is
strictly sequential in nature, with only one decision block activated at any time on any
level of the hierarchy.

When a decision block is activated, three kinds of additional information are
also needed, to guide the actions taken inside the block: “adverb” modifiers, a fuzzy
goal object g, and compressed information about the goals inherited from higher
levels of the hierarchy. In {7], mechanisms for adapting all of these structures or
networks are provided.

The fuzzy goal object mainly consists of an image of a desired state r* plus a
vector of weights (indicating which components of that image vector are most
important). In effect, this object provides a kind of explicit quadratic representation of
a value function. The need for this kind of representation became clear only after
considerable analysis of the problem of communication between decision blocks.

Within each decision block, neural networks must be adapted which are very
similar to those in the usual model-based adaptive critics -- local critic networks, a
local Model or prediction network, and a local Decision or action network. In this
case, however, it is especially critical that the latter two networks be stochastic
networks, rather than the usual sorts of deterministic neural network[2,7]. Two
additional networks are needed in order to optimize the interface with other decision
blocks.

A key aspect of using stochastic networks is that one can replicate such
phenomena as “imagination” or “dreaming” or novelty-seeking behavior which is
crucial to effective higher-order problem-solving and mammalian behavior [4,9].
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