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Abstract. We derive a new method of performing Canonical Cor-
relation Analysis with Artificial Neural Networks. We demonstrate its
capability on a simple artificial data set and then on a real data set
where the results are compared with those achieved with standard sta-
tistical tools. We then extend the method to deal with a situation where
there are two equal competing correlations within the datasets and show
that this extension is effective on the previous data sets.

1. Introduction

Artificial Neural Networks (ANNs) are well known as being capable of perform-
ing powerful transformations. Some of the first demonstrations of this power
came from the family of networks (e.g. 5, 6, 7, 2] which extract the Principal
Components of the input data. These give the best (in the sense of least mean
square error) linear compression of a data set. Recently non-linear extensions
of PCA networks have been shown to be capable of more sophisticated statisti-
cal techniques such as Exploratory Projection Pursuit [3] and Factor Analysis
[1].

In this paper, we investigate a neural network implementation of Canonical
Correlation Analysis (CCA). Canonical Correlation Analysis is used when we
have two data sets which we believe have some underlying correlation. Consider
two sets of input data; x; and x2. Then in classical CCA, we attempt to find
that linear combination of the variables which gives us maximum correlation
between the combinations. Let

h = W1X1=E W11
i

Yo = W2X2=§ We; T2
j

Then we wish to find those values of w; and w, which maximise the corre-
lation between y; and y, . Whereas Principal Components Analysis deals with
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the interrelationships within a set of variables, CCA deals with the relation-
ships between two sets of variables. If the relation between y1 and ys is believed
to be causal, we may view the process as one of finding the best predictor of
the set x; by the set x; and similarly of finding the most predictable criterion
in the set x; from the x; data set.

One way to view canonical correlation analysis is as an extension of mul-
tiple regression. Recall that in multiple regression analysis the variables are
partitioned into an x;-set containing q variables and a x,-set containing p =1
variable. The regression solution involves finding the linear combination X3
which is most highly correlated with x,.

2. The Canonical Correlation Network

The input data comprises two vectors x; and xp. Activation is fed forward
from each input to the corresponding output through the appropriate weights,

* wy and Wao.

h = W1X1=E W15
i

Yo = W2x2=z WajToj
J

We wish to maximise the correlation E(y,12) where E() denotes the expec-
tation which will be taken over the joint distribution of x; and x; . We may
regard this problem as that of maximising the function g; (wy|ws) = E(y1y2) as
a function of the weights, w;. This is an unconstrained maximisation problem
which clearly has no finite solution and so we must constrain the maximisation.
Typically in CCA, we add the constraint that E(y? = 1) and similarly with g,
when we maximise g»(wz|w,). Using the method of Lagrange multipliers, this
yields the constrained optimisation functions,

J1

1
E(yys) + 5/\1(1 - y}) and

J2

1
E(yiya) + M (1 - 33)

These can be optimised independently by implicitly assuming that w; is con-
stant when we are changing w, and vice-versa. We wish to find the optimal
solution using gradient ascent and so we find the derivative of the instantanecus
version of each of these functions with respect to both the weights, w; and Wa,
and the Lagrange multipliers, A; and );. Noting that

dg(wi|wa) _ d(y1y2) _ O(wixiys) _
6W1 - 6W1 - 3W1 = X1 (1)
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these yield respectively

aJ;

-a—v-% = Xy — X =x1(y2 — 1)
a1 2

& 1-u)

Similarly with the J, function, wo and ;. This gives us a method of
changing the weights and the Lagrange multipliers on an online basis. We use
the joint learning rules

Awy; = n@(ye ~ y1)
Al (1 —7)
Awe; = nz2i(y1 — Aoye)
Ay = no(l-33)

It has been found empirically that best results are achieved when ng >> 1.

3. Experimental Results

We report simulations on both real and artificial data.

3.1. Artificial Data

Our first experiment comprises an artificial data set: x; is a 4 dimensional vec-
tor, each of whose elements is drawn from the zero-mean Gaussian distribution,
N(0,1); x; is a 3 dimensional vector, each of whose elements is also drawn from
N(0,1). In order to introduce correlations between the two vectors, x; and xa,
we generate an additional sample from N(0,1) and add it to the first elements
of each vector. Thus there is no correlation between the two vectors other than
that existing between the first element of each.

Using a learning rate of 0.0001 and 500000 iterations, the weights converge
to the vectors (0.679, 0.023, -0.051, -0.006) and (0.681, 0.004, 0.005 ). This
clearly illustrates the high correlation between the first elements of each of the
vectors and also the fact that this is the only correlation between the vectors.

The effect of the constraint on the variance of the outputs is clearly seen
when we change the distribution from which all samples are drawn to N(0, 5).

The weight vectors converge to (0.141, 0.002, 0.003, 0.002) and (0.141, 0.002,
-0.001).

3.2. Real data

Our second experiment uses a data set reported in [4]; it comprises 88 students’
marks on 5 module exams. The exam results can be partitioned into two
data sets: two exams were given as open book exams while the other three
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were closed book exams. The exams were on the subjects of Mechanics(C),
Vectors(C), Algebra(C), Analysis(0), and Statistics(0). We thus split the five
variables (exam marks) into two sets-the closed-book exams (z;;,212) and the
open-book examgs (21,22, %23). One possible quantity of interest here is how
highly a student’s ability on closed-book exams is correlated with his ability
on open-book exams. Alternatively, one might try to use the open-book exam
results to predict the closed-book results (or vice versa).

Using a learning rate of 0.0001 and 500000 iterations, the maximal corre-
lation our network finds is 0.696. The weights converge to the vectors (0.026,
0.052) and (0.082, 0.009, 0.004). These compare with reported results (4] of
0.663 and (0.026, 0.052) and (0.082, 0.008, 0.004) which were found by standard
statistical batch methods.

3.3. Equal Correlations

. We now create artificial data which contains two independent correlations of
equal magnitude. We repeat experiment 1 with the same artificial data but this
time create correlations between z11 and z9; and correlations of equal magni-
tude between x5 and z4, by drawing two independent samples from N(0,1)
one to z1; and 3; and the other to Z12 and z22. The above network failed to
converge to either of the correlations presumably because the correlations were
of equal but independent magnitude. However by introducing an asymmetry
to the network in our constraints - we allow the outputs to have different power
originally -

1
ho= E(ny.) + 5/\1(’91 —yf) and

J2

1
E(y1y2) + 5)\1 (ka —y?)

our weights converge to the CCA directions. We found that it is not necessary
that k1 # ks for all time, but merely ensure that during the first phase of
convergence there is an inequality between these values (0.367666, 0.677243,
0.00431447, -0.0733304) and (0.313141, 0.582314, 0.000111589). We also now
report that the most accurate results (such as those reported in the first section
on artificial data) are achieved when there is some asymmetry between the

parameters k; and k; even when there is only one correlation between the
vectors.

4. Conclusion

We have investigated a neural network implementation of Canonical Correla-
tion Analysis (CCA) and demonstrated its power on simple problems. We have
reported simulations on both real and artificial data. We have shown that

L. Artificial Data - Starting with different initial distributions we can relia-
bility find different canonical correlation.
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2. Real Data - We have shown that the same network structure is capable of

finding the same correlations in real data which were found by standard
statistical batch methods.

3. Equal Correlation - We create artificial data containing two independent
correlation of equal magnitude and extended our method to force the
weights to converge to the CCA directions. We found that it is not
necessary that k; # ko for all time. We also now report that most
accurate results are achieved when there is some asymmetry between the
parameters k; and k2 even when there is only one correlation betweéen”
the vectors.

Future work will concentrate on finding nonlinear correlations in data sets- a
task for which standard statistical methods is not in general well-suited.
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