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Abstract: We extend the Bayesian framework to Multi -Layer Perceptron 
models of Non-linear Auto-Regressive time-series. The approach is evaluated 
on an artificial time-series and some common simpli fications are discussed. 

 
 

1. Introduction 

Non-linear Auto-Regressive (NAR, [Box et al. 94]) time-series models are a quite 
common prediction tool. Because of their general approximating capabiliti es ([Hornik 
et al. 89]), feed-forward neural networks (NN) of the Multi -Layer Perceptron (MLP) 
type ([Rumelhart et al. 86]) are often used to develop NAR models. However, we 
usually build a single NAR model embodied in a single NN. One of the drawbacks of 
this approach is that it doesn't allow us to compute confidence limits for the 
predictions. This problem was partly solved in the Bayesian framework, developed for 
non-sequential problems (see [MacKay 92], [Neal 92]), by taking into account the 
influence of model variance on the output distribution. 
 We shortly present here an extention of this Bayesian framework to NAR 
models. Some results of the full Bayesian treatment of an artificial NAR time-series 
are discussed, together with the consequences of some common simpli fications. We 
then compare, on the same problem, a classical li near technique and a standard NN 
approach to time-series modelli ng. 

2. MLP implementation of NAR models: a Bayesian framework 

Let us consider the NAR(p) process Xt t
; @

≥1
 given by 

(1) X g X Xt t t p t= +− −1, ,�3 8 ε , t p≥ ≥1 1, , 

where ε t  is an i.i.d. variable N 0 2;σε2 7 , independent of X Xt−1 1, ,� . We note by Dt  a 

sample x xt1, ,�  of the process. We want to approximate this model by an MLP 
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having k units in a single hidden layer. The output unit is linear and its activation 
value is given by 

(2) o x x v f w x wp i ij j i
j

p

i

k

, ,�

1
11

3 8 = ⋅ ⋅ −
�
��

�
��==

∑∑ , f y e y1 6 3 8= + − −
1

1
. 

We consider k as fixed a priori and we do not deal with its choice here (see [MacKay 
95]). We now have a set of functions of parameter w R R R= ∈ × ×⋅w w vij i i

p k k k, ,= B . 

In what follows, the output of a single MLP is g x xpw , ,�

13 8 . 
 We are interested in the posterior distribution p Dw1 6  given by 

(3) p D
p D p

p D
w

w w1 6 1 6 0 5
0 5=

⋅
, 

p D w1 6  being the likelihood and p w0 5 the prior distribution. We can then compute 

(4) p x D p x D p D dt t t t t+ += ⋅I1 12 7 2 7 2 7,w w w
w

, 

the distribution for the predicted value. This distribution allows us to evaluate 
confidence limits for our prediction by taking into account the noise in the data and 
the variance of the model. To compute the posterior according to (3), we start by 
introducing two new parameters. First, we consider that the prior over w is Gaussian, 

p e
k p

w
w

α α
π

α

1 6
0 5

= ⋅
+

− ⋅

2

2

2
2

. Second, we note β
σ ε

= 1
2 . We then have 

(5) p D
p D p p

p D
α β

β α α β
, ,

, ,
w

w w1 6
2 7 1 6 1 6

0 5=
⋅ ⋅

, 

because p D p Dα β β, , ,w w2 7 2 7=  and p pw wα β α,2 7 1 6= . The likelihood is 

(6) p D p x x x x p x xt t p p pβ β β, , , , ; , , , , ,w w w2 7 4 9 3 8= ⋅+� � �

1 1 1 . 

For non-sequential problems, one can easily express the likelihood as a product 
([MacKay 92]). Fortunately, this can also be performed for NAR models 

(7) p x x x x p x x xt p p i i i p
i p

t

, , , ; , , , ; , ,� � �+ − −
= +

= ∏1 1 1
1

β βw w4 9 4 9. 

If we note E x g x xD i i i p
i p

t

t
w w0 5 3 8= ⋅ − − −

= +
∑1

2 1

2

1

, ,�  and remember (1) we obtain 

(8) p D e p x xt

t p
E

p
Dtβ β

π
ββ

, , , ,w w
w2 7 3 80 5= ⋅ ⋅

−
− ⋅

2 1
� . 

The conditional distribution for the first p values is difficult to obtain. However, since 
p is fixed and p t<< , one may consider p x x p x xp p, , , , ,� �

1 1β w3 8 3 8=  or simply 

neglect it. We can eventually compute the distribution for the predicted value, 

(9) p x D p x D p D d d dt t t t t+ += ⋅I1 12 7 2 7 2 7, , , , ,
, ,

α β α β α β
α β

w w w
w
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for every t. If for all t t> 0  the changes to p Dtα β, ,w2 7  can be ignored, we may stop 

re-estimating it and thus significantly reduce the complexity of the computation. 
 In contrast, in the standard NN approach one simply looks for the parameter 
α β, ,w1 6

MP
 that maximizes the likelihood (the prior p w0 5 is unknown) or the 

posterior distribution ( p w0 5 is available), and then uses it to evaluate 
�

xt+1. Indeed, if 

p Dtα β, ,w2 7 is concentrated around α β, ,w1 6
MP

, we can approximate the integral in 

(9) by p x Dt t MP MP MP+1 , , ,α β w2 7. But we can no longer obtain confidence limits. 

 Several approximations were proposed for non-sequential problems 
([MacKay 92]) in order to make the Bayesian approach more tractable. Similar 
approximations are very helpful for NAR time-series: 

1° If p Dα β,1 6  is concentrated around α βMP MP,1 6 , then α β,  and w can be 

processed separately and the posterior becomes p D p DMP MPw w1 6 2 7≅ α β, , . 

2° We can perform a Gaussian approximation for p DMP MPw α β, ,2 7 . For an 

MLP having k units in a single hidden layer, the parameter space W  is 
composed of several equivalent subspaces (k k!⋅2  or just k ! , depending on 
whether the activation function of the hidden units is symmetric or not). The 
Gaussian approximation will only hold on these subspaces. 

3° Eventually, a Gaussian approximation can be used for p x Dt +11 6. The most 

probable output value and its associated confidence limits can be obtained. 

3. Experimenting with an NAR time-series 

We performed an experiment on a synthetic NAR time-series. Our purpose was to 
evaluate the Bayesian approach and to test the approximations just mentioned. We 
also wanted to compare a linear prediction technique and a standard NN method. 
 The NAR time-series should have a significantly non-linear but stable 
behavior. After an important amount of tests, we selected 

(10) X X X X e tt t t t
X

t
t= ⋅ − − ⋅ + >− − −

− ⋅ −0 9 21 1 2
20 1

2

. 1 6 ε , 

with σ ε = 0 1. , X1 1= ε  and X X2 1 20 9= ⋅ +. ε  (see figure 1 for a sample). Note that we 
used the same model for the initial values in the Bayesian computation. 
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Figure 1: A 100-point sample of the NAR time-series. 
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The number of hidden units (k) in the MLPs was fixed to 5 for all the experiments. We 
considered α and β as independent and set p 1 α1 6 =uniform on 0 5;  (quite 

arbitrarily), p 1 β1 6 =uniform on [0;Var (time-series)] (we use prior information). 

 The posterior distribution p Dα β,1 6  obtained for t = 50 is presented in 

figure 2. A Gaussian approximation is obviously inappropriate for p Dα1 6 ; α MP  

doesn't give much information about the entire distribution. For t = 200 we still have 
two different peaks. For t = 400, however, the posterior is nearly Gaussian. 
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Figure 2: The posterior distribution p Dα β,1 6  for t = 50. 

We noticed that the full Bayesian computation of the output distribution (9) was 
extremely time-consuming. We decided to perform this computation only for t = 50, 
200 and 400. Figure 3a presents the distributions for the predicted values xt+1. 
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Figure 3: (a) exact and (b) comparison of exact and approximate output distributions. 

The three distributions are nearly Gaussian. Table 1 shows the predicted values, with 
their confidence limits, and compares them to the true values. The confidence interval 
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shrinks when t increases: model variance diminishes as more data becomes available, 
so that the output variance is more and more explained by noise alone. 

 t = 50 t = 200 t = 400 

predicted xt
MP
+1  −0.3 −0.12 0.09 

95% confidence limits [−� 0.6; 0.0] [−0.37; 0.13] [−0.15; 0.33] 
actual xt+1  −� 0.636 −0.169 0.234 

Table 1: Most probable predicted values, associated confidence limits and the true values. 

When using the approximations mentioned before, we obtain a slightly different 
output distribution for t = 50 (figure 3b), but very similar ones for t = 200 or t = 400. 
 We then trained several MLPs by standard backpropagation on the first 200 
values of the time-series. The weights were randomly initialized in −1 1; . Training 
was stopped as soon as the residuals passed randomness tests (runs above and below 
the median, runs up and down, Box-Pierce). Note that the rather strong amount of 
noise in the training data makes overfitting unlikely. The residuals also passed a test 
for Gaussian distribution; estimated standard deviation was 0.107 for the residuals  
as compared to 0.1 for the noise injected. The minimal RMS error obtained by an 
MLP on the training set was 0.0116. However, the difference between the true NAR 
function and its approximation by the best-fitted MLP is significant (figure 4a). In 
fact, the transfer function for the MLP is nearly linear on the domain of interest. 
Indeed, the training set (figure 4b) covers a quasi-linear region of the target NAR 
function (the non-linear character is not manifest). Preliminary tests have confirmed 
that such MLPs could approximate well enough the true NAR function on −1 1 2; . 
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Figure 4: (a) true NAR function minus MLP approximation, (b) histogram of the training set. 

We can then expect to obtain good linear models for this data set. Several ARMA 
models were fitted to the data. The residuals passed the randomness tests only for the 
AR(3) and ARMA(1,1) models. The estimated standard deviation of the residuals was 
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0.109 and the RMS error on the training set 0.012. We see that the difference between 
the MLPs and the best linear models is not significant for this time-series. 

4. Conclusion 

The Bayesian framework developed for non-sequential problems was extended to 
MLP models of NAR time-series. This approach allows us to propose confidence 
limits for the predictions, by taking into account input noise and model variance. Note 
that the prior distribution is very important: usually, when the prior is stronger, the 
confidence limits are closer, but unfortunately the bias is higher. 
 We noticed that a full Bayesian treatment presents a very high computational 
cost. However, common simpli fications can be successfully applied if enough data is 
available. Other approximation techniques are being evaluated, such as the use of a set 
of NN to obtain the output distribution. This seems to be necessary if we want to make 
the Bayesian approach tractable for more complex time-series. 
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