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Abstract. We discuss the time-discrete parametrized synchronous dy-

namics of two coupled chaotic neuromodules. The symmetrical coupling

of identical 2-neuron modules results in periodic, quasiperiodic as well as

chaotic dynamics constrained to a synchronization manifold M . Stabil-

ity of the synchonized dynamics is calculated by transversal Lyapunov

exponents. In addition to synchronized attractors there often co-exist

asynchronous periodic, quasiperiodic or even chaotic atractors. Simula-

tion results for selected sets of parameters are presented.

1. Introduction

Many recent articles investigated the feasibility of synchronized chaotic dynam-
ics in various kinds of coupled systems (cf. citations in [1]). Most of this work
was stimulated mainly because of its importance for applications in the �eld of
secure communication. On the other hand, selective synchronization of neural
activity in biological brains was often suggested to be a fundamental temporal
mechanism for binding spatially distributed features into a coherent object (cf.
e.g. [4]). Thus, studying the properties of synchronized dynamics in coupled
chaotic neuromodules may provide interesting models also for the description
of higher level information processing in biological and arti�cial neural systems.
Coupled neuromodules provide a large set of parameters (synaptic weights and
bias terms/stationary inputs), which allow not only synchronization but also
the de-synchronization of module dynamics.

In the following we will use the term \synchronization" in the sense of
complete synchronization of dynamical systems; i.e. we consider systems, the
states of which can coincide, while the dynamics in time remains, for instance,
chaotic. We also discern between global and local synchronization. Global
synchronization means that for almost all initial conditions the orbits of the
systems will synchronize. Local synchronization refers to stable synchronized
states; i.e. small perturbations will not de-synchronize the systems.

In this contribution we study the discrete synchronous dynamics of two
coupled neuromodules. The modules are composed of standard analog neu-
rons: a self-inhibiting neuron coupled bi-directionally to an excitatory neuron.
This setup has larger parameter domains allowing for chaotic module dynam-
ics [2]. We derive conditions for the existence of synchronized dynamics in the
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coupled modules and for the stability of synchronized states. Already in this
simple coupled system we observe global as well as local synchronization of
periodic, quasiperiodic and chaotic dynamics. Synchronized orbits are not al-
ways stable; this be read from the transversal Lyapunov exponents introduced
in section 2. The boundary between stable and unstable synchronization of
chaos corresponds to switching from a chaotic to a hyperchaotic [3] regime of
the coupled system. Furthermore, computer simulations demonstrate that var-
ious non-synchronous attractors may co-exist with attractors constrained to
the synchronization manifold M .

2. Coupling chaotic neuromodules

We are considering a neuromodule as a discrete parametrized dynamical system
on an n-dimensional activity phase space Rn given by the map

ai(t+ 1) = �i +

nX
j=1

wij �(aj(t)) ; i = 1; : : : ; n ; (1)

where ai 2 Rn denotes the activity of the i-th neuron, and �i = �i+ Ii denotes
the sum of its �xed bias term �i and its stationary external input Ii. The
output oi = �(ai) of a unit is given by the standard sigmoidal transfer function
�(x) := (1 + e�x)�1, x 2 R, and wij denotes the synaptic weight from unit
j to unit i. A neuromodule having a parameter set � = (�; w) for which
the dynamics (1) has at least one chaotic attractor will be called a chaotic

neuromodule.
In the following we consider a chaotic neuromodule consisting of an exci-

tatory unit bi-directionally coupled to an inhibitory unit with self-connection
[2]. Its 2-dimensional discrete dynamics is given by a �ve parameter family of
maps f� : R

2 ! R
2, � = (�1; w12; �2; w21; w22) 2 R5, de�ned by

a1(t+ 1) := �1 + w12 �(a2(t)) ;

a2(t+ 1) := �2 + w21 �(a1(t)) + w22 �(a2(t)) : (2)

This module has a large parameter domain, where its dynamics has a global
chaotic attractor, but also the coexistence of periodic and chaotic attractors is
observed [2].

Now, let A and B denote two neuromodules of the kind described above (2)
with parameter sets �A = (�A; wA) and �B = (�B ; wB). The neural activities
of module A and B will be denoted ai, bi, i = 1; 2, respectively. Connections
going from module B to module A are given by (2� 2)-coupling matrix wAB .
Correspondingly, connections from module A to module B are given as a matrix
wBA. We will discuss the special case of inhibitory couplings from the inhibitory
neuron of a module to the excitatory neuron of the other module. The resulting
4-dimensional dynamics F� of the coupled 2-modules A and B is then given by

a1(t+ 1) = �A1 + wA
12 �(a2(t)) + wAB

12 �(b2(t)) ;
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a2(t+ 1) = �A2 + wA
21 �(a1(t)) + wA

22 �(a2(t)) ;

b1(t+ 1) = �B1 + wB
12 �(b2(t)) + wBA

12 �(a2(t)) ;

b2(t+ 1) = �B2 + wB
21 �(b1(t)) + wB

22 �(b2(t)) : (3)

We are interested in the process of complete synchronization of module
neurons, by which we mean that there exists a subset D � R

4 such that
(a0; b0) 2 D implies

lim
t!1

j a(t; a0)� b(t; b0) j = 0 ;

where (a(t; a0); b(t; b0)) denotes the orbit under F� through the initial condi-
tion (a0; b0) 2 R

4. Thus we will study the case where corresponding neurons
of the modules have identical activities during a process. The synchronization
is called global if D � R

2n, and local if D � R
4 is a proper subset. Thus, a

synchronized state s of the coupled system is de�ned by s := a = b 2 Rn. The
synchronization manifold M := f(s; s) 2 R

2n j s = a = bg of synchronized
states corresponds to a 2-dimensional hyperplane M �= R

2 � R
4. We intro-

duce coordinates parallel and orthogonal to the synchronization manifold M
as follows:

�i :=
1p
2
(ai + bi) ; �i :=

1p
2
(ai � bi) ; i = 1; 2 : (4)

For simplicity, we will now consider identical modules with parameter sets
satisfying

� := �A = �B ; w := wA = wB ; wcoup := wBA = wAB : (5)

Setting �(t0) = a(t0) � b(t0)) = 0 for some t0 we can immediately verify by
direct calculation that every orbit of F� through a synchronized state s 2M is
constrained to M for all times.

Using (�; �)-coordinates given by (4) the dynamics ~F� of two coupled iden-
tical modules can be written as

�i(t+ 1) =
p
2 � �i + 1p

2

2X
j=1

w+

ij �G+(�j(t); �j(t)) ; i = 1; 2 ; (6)

�i(t+ 1) =
1p
2

2X
j=1

w�ij �G�(�j(t); �j(t)) ; i = 1; 2 : (7)

where we have set

w+ := (w + wcoup) ; w� := (w � wcoup) ; (8)

and the functions G+, G� : R2 ! R are de�ned by

G+(x; y) := �(
1p
2
(x+ y)) + �(

1p
2
(x� y)) ; (9)

G�(x; y) := �(
1p
2
(x+ y))� �(

1p
2
(x� y)) : (10)
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Setting � = 0 and s = 1=
p
2 �, the synchronized 2-dimensional dynamics F s

�

constrained to M is derived from equations (6). It reads

s1(t+ 1) = �1 + w+

12 � �(s2(t)) ; (11)

s2(t+ 1) = �2 + w+

21
� �(s1(t)) + w+

22
� �(s2(t)) : (12)

Thus, the synchronized dynamics F s
� will display the whole spectrum of dy-

namical behavior of a single isolated chaotic 2-module with w12 in (2) replaced
by w+

12 = wA
12 + wAB

12 ; i.e. it may have �xed point attractors as well as peri-
odic or chaotic ones [2]. Although the persistence of synchronized dynamics
for identical modules is guaranteed by condition (5), it is not at all clear that
the synchronization manifold M itself is asymptotically stable with respect to
the dynamics ~F�. Thus, a periodic or chaotic orbit in M may be an attractor

for the synchronized dynamics F s
� but not for the dynamics ~F� of the coupled

system.
To discuss the stability aspects of the synchronization manifold M it is

e�ective to consider the synchronization exponents �si and the transversal ex-

ponents �?i , i = 1; 2 for the synchronized dynamics (11). They are derived
from the linearization D ~F�(s) of ~F� around synchronized states s(t):

D ~F�(s) =

�
L+(s) 0
0 L�(s)

�
; L�ij(s) := w�ij � �0(sj) ; i; j = 1; 2 : (13)

Synchronization exponents �si will be calculated from the eigenvalues of matrix
L+, and transversal exponents �?i from those of L�. Synchronized chaotic
dynamics will be characterized by a situation where at least one synchronization
exponent satis�es �s > 0. On the other hand, a positive transversal exponent
indicates an unstable synchronization manifold M . Thus, if an unstable M
contains a chaotic orbit the system entered a hyperchaotic regime [3]; i.e. at
least two Lyapunov exponents of the synchronized dynamics F s

� are positive.
Simulations reveal that stable synchronization of identical 2-modules occurs

over a large range of identical external inputs to the excitatory units; moreover,
synchronization can be observed for periodic orbits as well as for quasi-periodic
or chaotic dynamics. This is illustrated, for instance, in the bifurcation dia-
gram of the synchronized dynamics constrained to M depicted for the �xed
parameters �2 = �2, �w12 = w21 = 6, w22 = �16, wcoup = �3 in �gure (1).
Control parameter is the external input �1 to the excitatory units. Starting at
�1 = 0, quasiperiodic orbits are observed, succeeded by a short interval with
periodic and chaotic attractors. Then a large domain of period-3 attractors
is seen, which at �1 = 4:38 bifurcates into a chaotic attractor. A \classical"
chaotic domain follows, where reversed period-doubling routes to chaos �nally
end up in period-2 attractors. The stability of this synchronous dynamics can
be read from �gure (2) where the largest synchronization and transversal ex-
ponents, �s1 and �?1 , respectively, are depicted. We observe �1-intervals for
which the transversal exponent �?1 is positive; i.e. the corresponding synchro-
nized dynamics on M is unstable. The underlying data �le locates the larger
instability �1-intervals as (0:0; 0:24), (5:52; 5:66), (6:98; 7:28).
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Figure 1: Bifurcation diagram for the synchronous dynamics with respect to
�1 (= inputs to the excitatory units). For �xed parameter values see text.
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Figure 2: Largest synchronization and transversal exponents corresponding to
the bifurcation diagram of �gure 1.

We conclude that stability of synchronous periodic and chaotic dynamics in
symmetrically coupled identical neuromodules is a quite general phenomenon.
However, the following observation is also noteworthy: For large parameter
domains there co-exist di�erent attractors in the coupled system: There are
synchronous periodic or chaotic attractors constrained to M and at the same
time also asynchronous periodic, quasiperiodic or chaotic attractors not con-
strained to M . An example is shown in �gure 3, where a synchronous chaotic
attractor co-exists with an asynchronous quasiperiodic attractor for parameter
values �1 = 2, �2 = �1, �w12 = w21 = 6, w22 = �16, wcoup

12 = �3. The left
�gure shows projections of the co-existing attractors onto the (oA1 ; o

A
2 )-phase

space of module A, the right hand �gure projections onto the (oA1 ; o
B
1 )-output

space of the coupled system. Synchronized outputs will appear as states on the
main diagonal in (oA1 ; o

B
1 )-space.

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 1-6



Figure 3: A synchronous chaotic attractor co-existing with an asynchronous
quasiperiodic attractor for the coupled 2-neuron modules. Figures show pro-
jections to the phase space of module A (left) and to the (oA1 ; o

B
1 )-output space

of the coupled system. Parameters: see text.

3. Conclusions

Synchronized chaos in symmetrically coupled identical neuromodules is a fairly
general phenomenon. It often co-exists with di�erent kinds of asynchronous
dynamics. Thus, stable synchronization can depend on initial conditions, that
is, on the \history" of the coupled system. Furthermore, a synchronized mode
often persists even if external inputs are varying slowly. Thus, synchronization
of coupled modules is really a sign for time-varying (identical) input signals with
amplitudes having a �xed ratio (recall, that the inputs may correspond to the
weighted outputs of other neurons in a larger system). Diverging inputs and/or
steering the coupled modular system into unstable synchronization domains are
di�erent techniques for de-synchronization.
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