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Abstract. Order of the mean �eld by heterogeneity is studied in the

turbulent phase of a chaotic neural network. Heterogeneity means the

distributed randomness of the input in each neuron or the weight in the

network. The average power spectrum of the mean �eld is used to observe

the order and to focus on its peak sharpness. The sharpness of the power

peak grows remarkably in the turbulent phase, except around the phase,

due to the input disorder. One can �nd the maximum of the power sharp-

ness as the weight disorder increases in the turbulent phase. We suppose

that this ordering e�ect is important for processing information for actual

neural networks because of the general existence of such heterogeneity.

1. Introduction

The e�ects of noise and disorder in nonlinear systems have received considerable
attention. Stochastic resonance is one of famous examples for noise-induced or-
der [9]. This is a cooperative e�ect between noise and a weak sinusoid. In N

globally coupled integrated and �re neurons, noise creates synchronized state
in the mean �eld and the individual neuron, which is not found in the isolated
neuron [6]. Several studies have focused on a stabilization in chaotic systems.
The 
ip-
op process in the Lorentz system is stabilized by noise [8]. The dis-
tribution in a power spectrum is ordered by noise in the Belousov-Zhabotinskii
(B-Z) map [4].

The e�ects of disorder in nonlinear systems have also been reported to pro-
duce order as the e�ect of noise. In a spatially extended system of forced,
damped, and nonlinear pendula, disorder makes chaotic patterns into complex
but regular periodic patterns [3]. A globally coupled map is also reported to
create order in the mean �eld by disorder in each map [7]. Most of the studies
reported that the noise or disorder increases the coherence of the system.

In this paper, we focus on a chaotic neural network that has been proposed
in studies of the giant axons of squid and the Hodgkin-Huxley equation [2]. The
neuron model in this network was the �rst to provide a chaotic response; some
parameter combinations trigger a chaotic output. These associative chaotic
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dynamics of the network are used for information processing, especially as a
means of escaping from local minima in optimization and retrieving associative
memories [10, 1].

Heterogeneity means the distributed randomness of the input in each neuron
or the weight in the network. The average power spectrum of the mean �eld
is used to observe the order and to focus on the sharpness of its peak. To
measure the sharpness of the power spectrum peak, we introduce the modi�ed
autocorrelation function of an average spectrum. We guess that this ordering
e�ect is important for processing information for actual neural networks because
of the general existence of such heterogeneity.

2. Ordering in the Mean Field of a Chaotic

Neural Network with Heterogeneity

2.1. Chaotic neural network

The original chaotic neural network is represented as the dynamics of the dif-
ference equations of three variables [2]. A certain parameter combination can
reduce variables into one. We study a global coupling network with a heteroge-
neous coupling or a heterogeneous input. The networks can be represented by
the following equation.

yi(t+ 1) = kyi(t)� �f (yi(t)) +
NX

j=1

wi;jff (yj(t))� f (yi(t))g+ ai;

xi(t+ 1) = f (yi(t+ 1));

f (z) =
1

1 + exp(� z
�
)
; (1)

where
yi(t) : internal state of ith neuron at time t,
xi(t) : output of ith neuron at time t,
k : damping constant,
� : refractory parameter (� � 0),
wi;j : weight from jth neuron to ith neuron,
ai : parameter of ith neuron based on the input and the threshold,
� : steepness parameter of the sigmoid function.
We call parameter ai the input for a bifurcation parameter. The bifurcation
diagram and the Lyapunov exponent of the chaotic neuron model appeared in
Ref. [2, 1]. We �x the parameter set at k = 0:7, � = 1:0, and � = 0:02
throughout this paper. We normally consider N = 100 networks and set the
initial values yi(0) as uniform random numbers distributed over [�1; 1]. We
note that the equation has interactions for the di�erence between one neuron
and the other neurons. This formulation corresponds to the original chaotic
neural network [2] with �i depending on each neuron. Disorder of the weight
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means that wi;j is distributed over [w � �w;w + �w]. We de�ne the weight
disorder ratio Dw as �w

w
. Disorder of the input also means that ai is distributed

over [a � �a; a +�a]. We also de�ne the input disorder ratio Da as �a
a
. We

use the identical weight or input con�guration for one disorder ratio.
The mean �eld m(t)(= 1

N

PN

i=1 yi(t)) of neuron internal state yi(t) is used
to calculate the power spectrum. We consider 4096 time steps for calculat-
ing the power spectrum by discarding 8192 transient time steps. The average
power spectrum is calculated from 10 mean �elds from 10 initial values. To
measure the sharpness of the power spectrum peak, we employed the modi�ed
autocorrelation function as in Ref. [5], which is de�ned by

C =
1

M

MX

i=1

PM

j=1 Pj+imodMPj
PM

j=1 PjPj
; (2)

where Pi is the value of the power at the ith frequency index, and M is the
number of discrete points in the spectrum. This provides a good measure of the

atness of a spectrum. C takes the value 1 when the spectrum is completely

at, and 0 when there are just �-peaks. A better indicator of the sharpness of
the peaks is given by

S = � log10 C: (3)

S = 0 is the signature of a completely 
at spectrum and S !1 is the signature
of (very sharp) �-peaks. We also use the KS entropy, which represents the
ampli�cation ratio of the tangential volume.

2.2. Results of numerical calculations

First, we show the average power spectrum at a certain ratio of each disorder.
Figure 1 represents the average power spectrum at the input disorder ratio
Da = 0:2. The peak grows when the disorder ratio has a nonzero value. Figure
2 shows the average power spectrum at the weight disorder ratio Dw = 1:0. The
result is similar to the input case.

Next, we show the sharpness of the power spectrum peak when the disorder
ratio increases. Figure 3 represents the sharpness of the power spectrum peak
and the corresponding KS entropy when the input disorder ratio changes. We
found the parameter regions where the sharpness of the power peak increases as
the input disorder ratio increases. From the Lyapunov spectrum calculations, we
notice that the signi�cantly increased regions of sharpness have smooth curves
in the Lyapunov spectrum. This means that the input disorder can make order
of the power spectrum in the turbulent phase. However, this ordering is only
found in a certain range of weights except for small and large weight values in
the turbulent phase. We are not sure of the ordering around the border of the
turbulent phase. We could not observe a clear relation between the sharpness
of the power spectrum peak and the KS entropy, but there is a decreasing trend
of the KS entropy with the increasing disorder ratio.
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(a) Dw = 0:0, Da = 0:0 (b) Dw = 0:0, Da = 0:2

Figure 1: Average power spectrum at input disorder Da = 0:2 (network has
w = 0:005 and a = 0:35).
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Figure 2: Average power spectrum at weight disorder Dw = 1:0 (network has
w = 0:005 and a = 0:35).

Figure 4 shows the sharpness of the power spectrum peak and the corre-
sponding KS entropy when the weight disorder ratio changes. We also discov-
ered parameter regions where the sharpness of the power peak has an increasing
trend as the weight disorder ratio increases. Here, the phase within the calcu-
lated range of the disorder ratio is turbulent. This situation is di�erent from
the result in the input disorder. We found the maximum power sharpness as
the weight disorder increases in the turbulent phase.

3. Conclusion and Discussion

We studied the order of the mean �eld by heterogeneity in the turbulent phase
of a chaotic neural network. The distributed randomness of the input in each
neuron or the weight in the network was introduced as heterogeneity. The av-
erage power spectrum of the mean �eld had sharper peaks at nonzero values
of the disorder ratio in the turbulent phase. We employed the modi�ed auto-
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(a) Power peak sharpness (b) KS entropy

Figure 3: Power spectrum peak sharpness and corresponding KS entropy plotted
as a function of the input disorder ratio Da (network has w = 0:005 and a =
0:35).

correlation function of an average power spectrum to measure the sharpness of
the power peak. We found the parameter regions where the sharpness of the
power peak increases as the input disorder ratio increases. The sharpness of the
power peak grew remarkably in the turbulent phase, except around the phase,
due to the input disorder. One can �nd the maximum power sharpness as the
weight disorder increases in the turbulent phase. We discovered di�erences in
the increasing regions of the power sharpness according to each disorder ratio.
However, we notice that these two disorders have a similar e�ect at the right-
hand side of Eq. (1) from the viewpoint of the mathematical formulation. As a
result of this similarity, there is a possibility of �nding the same mechanism for
ordering by any parameter disorder. We also notice the weight disorder makes
the order weaker than the input disorder. This may be due to a di�erent degree
of ordering e�ect by the same ratio in the input and weight disorder. We had
a decreasing trend of KS entropy as the increasing of the disorder ratio; how-
ever, we could not observed a clear relation between them. To analyze these
phenomena in detail, we need a smoothness measure of the Lyapunov spectrum
to decide the turbulent degree in the turbulence. This may provide a precise
condition for ordering in the turbulent phase.

Ordering may be found in other phases since it is important for actual bio-
logical nerve systems. This e�ect may be used to process information in actual
neural networks because we can easily �nd the heterogeneity of each element
and the randomness of the interaction among elements in biological systems.
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(a) Power peak sharpness (b) KS entropy

Figure 4: Power spectrum peak sharpness and corresponding KS entropy plotted
as a function of the weight disorder ratio Dw (network has w = 0:005 and
a = 0:35).
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