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Abstract. This paper introduces a hierarchical Self-Organizing Feature
Map (SOFM). The partial maps consist of individual numbers of neurons,
which makes a cluster analysis with di�erent degrees of resolution possi-
ble. A de�nition of a special Mahalanobis space of the data set during the
learning improves the properties concerning clusters with low density.

1. Introduction

The Self-Organizing Feature Map (SOFM) [2] is an e�cient method for cluster
analysis of a high-dimensional feature space onto 2D arrays of reference vectors.

Frequently, there exists no a-priori knowledge about the distributions of the
features. In this case it is di�cult to choose a useful number of neurons for
the SOFM. Many authors successfully deal with this problem, e.g. [1]. But,
a correct interpretation of the cluster analysis often makes di�erent SOFMs
with comparable orientation and distinct degrees of resolution necessary. Such
demands are well known especially from analysis tasks in biomedical research.

Another important problem arises from the smoothing property of the
SOFM which leads to a relative insensitivity to clusters of low feature den-
sity. As the approximation errors of the representing neurons increase, the
weight vectors cannot be considered typical reference vectors any longer.

The main idea of a modi�cation described in previous papers ([3], [4]) was to
improve the learning ability of individual neurons on the SOFM in direction of
regions with low feature density. This could be achieved by a special de�nition
of partial spaces with a hyper-ellipsoid. A disadvantageous restriction consisted
in the de�nition of only one ellipsoid and its �xed border.

In the following a learning algorithm of a hierarchical SOFM will be intro-
duced that surmounts the above-mentioned problems by means of a Mahala-
nobis space which contains a variable number of centers of high feature density.
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2. General structure of the hierarchical SOFM

Figure 1 shows an overview of the structure for the hierarchical SOFM, which
contains a number of partial maps k 2 [1; l]. The di�erent maps are generated
successively in a regime depending on pre-de�ned learning steps tk. For an
improvement of the resolution the number of neurons in a new map is increased.

The introduced learning algorithm is based on the original SOFM algorithm
presented by Kohonen in [2]. The weight vector mmm of the winner neuron c,
the neuron featuring the minimal Euclidean distance to the presented feature
vector xxx, and its neighbors i in the learning step t are updated according to:

mmmki(tk + 1) =mmmki(tk) + �k(tk) �ki(tk; Dc) hkci(tk) [xxx(tk)�mmmki(tk)] (1)

where k describes the respective partial map. The learning rate �k determines
the magnitude of the update and the neighborhood function hkci describes the
e�ective training region of the SOFM. In addition, a term �ki controls the
update depending on the learning step and the Mahalanobis distance D, which
describes the feature density within the N -dimensional feature space xxx 2 RN .
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Figure 1: Overview of the hierarchical SOFM

3. Learning of the smallest partial map

In the beginning of the learning process t1<I1 the smallest map of the hier-
archical SOFM k = 1 is pre-orientated in direction of the two greatest eigen-
values of the whole feature distribution, calculated by the principal components
analysis (PCA). During the learning steps t1<I1 the term �1i is assigned the
value � = 1 (see Eq. 6).

During the �rst steps the initial order of the SOFM is established. At t1=I1
a recall of the map is realized. In the investigated arti�cial example distribu-
tions (e.g. Fig. 2) the step t1=I1 was higher than ten percent of the maximal
number of learning steps. The feature vectors xxx projected onto each neuron i
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serve for a calculation of regions with high feature density in the feature space.
For the de�nition of a density space the Mahalanobis distance Di is used:

Di(xxx) = [xxx(tk)�xxxi]
T CCC�1i [xxx(tk)�xxxi] (2)

where xxxi describes the mean vector of a partial distribution, that means the
center i of high local feature density. The term CCCi represents their covariance
matrix. In contrast to the previous algorithm in [3], [4] with one �xed hyper-
ellipsoid the Eq. 2 leads to equipotential lines with several centers of high
density in the N -dimensional Mahalanobis space which describes the estimated
density in continuous space. The accuracy of the estimation depends on the
number of neurons in the smallest partial map and the quality of learning at
t1= I1. Notice that an expansion of the smallest map results in a remarkable
increase in the computation time for the following learning phase.

After the described process a formation of a new partial map is possible. The
continuation of the learning phase for the mapk=1including adaptation towards
not well separable clusters with low feature density is described in section 5.

4. Initialization of the higher partial maps

At learning step tk=Ik a generation of another partial map k+1 with a greater
number of neurons than the map k is possible. For the algorithm it is not
necessary that the neuron numbers of the new map increase in each dimension
by a step one. Especially, it can be useful to de�ne the size of the map k=2
signi�cantly greater than the map k=1.

The averaged and maximum approximation errors:

Eki =
1

q
p
N

qX
j=1

k xxxj �mmmki k ; E
(m)
ki =

maxki k xxx1:::q �mmmki kp
N

(3)

of each neuron of the recall at tk = Ik are used for the initialization of the
map k+1. Using the standardization term

p
N a comparison independent of

the dimension of the feature space N is possible yielding E 2 [0; 1]. The term q
indicates the number of states of excitations for each neuron and xxxj describes
the feature vectors projected onto it. In consideration of an adaptation in the

direction of clusters with low feature density the compound error function E
(I)
ki :

E
(I)
ki = Eki (E

(m)
ki �Eki) (4)

is used for the de�nition of the data set for the initialization learning of map k+1.
As its data the learning set contains two-dimensional, equidistant, interpolated
coordinates of the topological neighborhood function of map k. The inter-

polated error function E
(I)
ki of Eq. 4 determines the frequency of occurrence of

each coordinate in the data set. The initialization learning is realized by means
of small learning rates and a small number of steps. The neuron weights of the
map k+1 learn coordinates of the topological neighborhood function which
minimized the calculated approximation errors. After that the trained neuron
positions on the neighborhood grid are transformed into N -dimensional feature
space (see Fig. 2). For this task a bi-linear interpolation is used.

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 13-18



5. Learning with an additional limitation

After that the training of all partial maps tk<tmax of the hierarchical SOFM
can be continued with t1:::k�1+1, tk = Ik+1 and tk+1 = 1. During the steps
tk+1<Ik+1 the term �(k+1)i of the map k+1 is assigned the value 1 (see Eq. 6).

The learning process with t1:::k>I1:::k realizes a further adaptation of the
neuron weights to the feature distribution.The algorithm also supports an adap-
tation of several neurons in the direction of clusters with low feature density.
The learning rate is limited to �k=

p
k. A similar restriction on � is used for the

standard deviation of hkci. In each learning step of this stage the minimal Maha-
lanobis distance Dc of the presented feature vector xxx is calculated according to:

Dc(xxx) = min
i
[Di(xxx)] (5)

The center of high density which is characterized by the minimal distance
through Eq. 5 describes the density relationships in the feature space by it-
self. That means, no superposition between several local centers exists. A
monotonously decreasing function DB controls the e�ective region of the se-
lected high density center in the term �ki:

�ki(tk ; Dc) =

8>><
>>:

1
[Dc(mmmki)�DB(tk)]

3

tk > Ik and i 6= c and
Dc(mmmkc) > DB(tk) and
Dc(mmmki) > Dc(xxx) > DB(tk);

1 else

(6)

of the modi�ed learning rule in Eq. 1. The term �ki is an empirically found func-
tion. In the region of lower feature density it is a decreasing function with in-
creasing distance of the neighborhood neurons to the selected center of density.

If the feature vector xxx and the winner neuron c are located outside the
region with high feature density, i.e. Dc(mmmkc)>DB(tk) and Dc(xxx)>DB(tk),
then the positions in feature space of all neighborhood neurons are tested:
Those neighborhood neurons which are also situated in the region with lower
feature density Dc(mmmki)>DB(tk) and meet the requirement Dc(mmmki)>Dc(xxx),
respectively, experience an additional limitation on the learning ability through
the term �ki. This way, a contraction of the map can be suppressed. Therefore,
it is possible to adapt some neurons in the direction of not well separable
clusters with low feature density.

The performance of � in the previous algorithm are demonstrated in [5], [7]
on arti�cial and real data sets. Correspondingly, the Figures 2 and 3 show a
comparison between a hierarchical SOFM trained with a basic method, that
means without limitation through �, and the modi�ed algorithm. The used
arti�cial example distribution contains clusters with di�erent feature density.
The clusters I and II are not completely separable. In contrast to the basic
method the 4*4-SOFM of the modi�ed algorithm projects the cluster VI onto
a separate neuron and the weight vector represents a reference vector of this
cluster. Moreover, a decrease of the approximation errors is detectable. Fig-
ure 3 also demonstrates the di�erent resolution of the distinct partial maps of
the hierarchical SOFM. The increase of the resolution facilitates a detection of
smaller subclusters.
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6. Conclusion

The used arti�cial example distribution shows that the described expansion of
the learning algorithm to hierarchical structures of SOFM in connection with
the de�nition of a Mahalanobis space which de�nes several regions of high
feature density can improve the convergence of neuron weights in direction of
clusters with low feature density. The increasing number of neurons in the
higher partial SOFMs raises the resolution of the analyzed feature clusters.
Besides, in contrast to SOFMs without pre-de�ned structures the introduced
hierarchical SOFM makes an interpretation of the analysis without in-depth
expert knowledge about arti�cial neural networks possible.

The training of the hierarchical SOFM, in particular with a high number of
neurons and levels respectively requires a lot of computation time. However,
the algorithm is well suited for a realization on parallel processing hardware.

The introduced algorithm is applied to �rst investigations of new and com-
plex high-dimensional feature distributions without a-priori knowledge about
the number, position and form of the sought after clusters (see also [6]).

In the foreseeable future the results of a cluster analysis with the described
algorithm in a special �eld of biomedical research will be published.
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Figure 2: Learning results of the hierarchical SOFM with 3*3 and 4*4 neurons
in comparison with the basic method (without limitation through the term �).
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Figure 3: Recalls of the trained hierarchical SOFMs (frequencies in [%]) and
their approximation errors, side-by-side for both the basic method (without
limitation through the additional term �) and the modi�ed learning algorithm.
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