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Abstract.

We study a 2-populations model of analogic recurrent neural network.

This model takes into account the in
uence of inhibitory and excitatory

neurons. It is dedicated to study collective dynamical properties of large

size fully connected recurrent networks. The evolution of neuron acti-

vation states is given in the thermodynamic limit by a set of mean-�eld

equations and the network satis�es a \propagation of chaos" property.

All these results are supported by rigorous proofs using large deviations

techniques. Moreover, we observe that the bifurcation diagram of these

mean-�eld equations, as well as �nite size simulations, reveal a paramet-

ric domain where the expectation and variance of the limit law of the

activation potentials describe periodic oscillations. Fluctuations of indi-

vidual neurons around this average may occur, showing the existence of

a stochastic non stationary regime for long time. This can be directly

related to recent biological discoveries about the role of inhibition in the

synchronization of excitatory neurons.

1. Introduction

Synchronization seems to be a very general principle of processing in the brain,
especially in the �rst steps of sensory integration. It has indeed been observed
in the processing of visual scenes [8], odor-recognition tasks [11], sensori-motor
tasks [1], and even memory recall [3]. The modelling of synchronized dynamics
is thus of crucial interest for the comprehension of data processing in the brain.
Some theoretical models have recently been proposed [10, 6] and are subjects
of growing interest in the �eld of neural networks.

The complexity of large size recurrent neural networks leads scientists to
look for simpli�cations. In many models, it seems that activation potentials
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follow gaussian distributions and that individual intercorrelations are vanish-
ing when the size of the network grows to in�nity. The characteristics of such
gaussian asymptotic distributions are given by mean-�eld equations. Thus,
Sompolinsky [13] used statistical physics methods to obtain mean-�eld equa-
tions and to study the dynamical properties of continuous-time networks in
the case of assymetric interactions. Cessac et al. [5] used the same approach
for discrete-time models and obtained the vanishing correlations of activation
states in the thermodynamic limit. For large size networks, they numerically
showed the generical occurence of chaos by a quasi-periodicity route. It has
also been established in [4] that this chaotic regime is described in the thermo-
dynamic limit by a gaussien process.

Otherwise, mathematicians, as Geman [7], have given important contribu-
tions to that domain. Geman proved rigorously the mean-�eld equations for
some linear models. Then, Ben Arous and Guionnet [2] showed many results
in a continous time spin glasses context. They proved that the annealed law
of the spins empirical measure satis�es a large deviation principle in the high
temperature regime. The study of the rate function, which admits a unique
minimumand the tightness obtained by Guionnet [9] allowed them to compute
the weak convergence of the law of every spin to a measure given by an implicit
equation. Thanks to this measures tightness, they had no temperature condi-
tion for their \propagation of chaos result", which is closely related to vanishing
correlations of activation states in densely connected recurrent networks.

In the �rst part, we use their methods to study mathematically, in the
most general case, discrete time 2-populations neural networks. We prove an
exponential tightness property, and therefore establish a large deviation prin-
ciple without any temperature condition. Moreover, we obtain two limit laws
for the neurons of each population. These laws are given explicitly and de-
scribed by the mean-�eld equations. In the second part, we precise a particular
architecture with opposite inhibitors-excitators in
uences. We show some para-
metric domains for which the mean-�eld stationnary process describes periodic
synchronized dynamics. This limit behavior is then compared to �nite-size
networks dynamics.

2. Model

We consider the following discrete time neural networks, with dynamics:�
xpi (t) = f(upi (t))

upi (t) =
Pn1

j=1 J
p1
ij x

1
j(t � 1) +

Pn2
j=1 J

p2
ij x

2
j(t � 1) + �W p

i (t) � �pi
(1)

For p 2 f1; 2g, there are np neurons of population p. For p; q 2 f1; 2g2, the
(Jpqij )

0s represent the connection weights relative to the in
uence of population
q on population p. Notice that they are not centered, contrary to Ben Arous
and Guionnet's spin glasses model. The �pi are the thresholds, and W p

i (t) is a
synaptic noise. f is an arbitrary sigmoidal function.
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Our nets are fully connected. We study the statistical behavior of this sys-
tem when the sizes of the populations grow to in�nity without any change
in their proportion. We suppose that the distributions of the connection

weights, the thresholds and the synaptic noise are gaussian lawsN (
�Jpq

nq
; (J

pq)2

nq
),

N (��p; (�p)2) and N (0; 1). All these random variables are supposed to be inde-
pendent.

3. Mathematical advances

We consider the evolution of the system between 0 and a �xed time T . We
suppose � > 0. We note PN the law of (x11; ::x

1
n1
; x21; ::; x

2
n2
). Let (�̂1N ; �̂

2
N ),

de�ned for p 2 f1; 2g by : �̂pN = 1
np

Pnp
i=1 �xpi . In [12], we prove the exponen-

tial tightness of the (�̂1N ; �̂
2
N ) without any temperature condition. Moreover,

we show that when N grows to in�nity, these laws satisfy a large deviations
principle, whose good rate function admits a unique minimum.

We deduce that the distribution of every (upi (t))1�t�T converges towards
a gaussian law Qp. The characteristics of these two limit laws are given by
the following mean-�eld equations : we consider (�p(t);�p(t; t0))1�t;t0�T the
expectation and covariance matrix of Qp (�p represents the time covariance
of each population's generic neuron). In particular, �p(t) = �p(t; t). We note
Dh = 1=

p
2�exp(�h2=2). Then we have :

Theorem 1 : Mean-�eld equations.

For p 2 f1; 2g, and 1 � t; t0 � T � 1(t 6= t0) :

�p(t+1) = ���p+ �Jp1
Z

f(
p
�1(t)+�1(t))Dh+ �Jp2

Z
f(
p
�2(t)+�2(t))Dh (2)

�
p(t+1) = (�)2+(�p)2+(Jp1)2

Z
f
2(
p

�1(t)+�
1(t))Dh+(Jp2)2

Z
f
2(
p

�2(t)+�
2(t))Dh (3)

�p(t + 1; t0 + 1) = (Jp1)2C1(t; t0) + (Jp2)2C2(t; t0) + (�p)2 (4)

with

C
p(t; t0) =

Z Z
DhDh

0

f

 p
�p(t)�p(t0) � (�p(t; t0))2p

�p(t0)
h +

�p(t; t0)p
�p(t0)

+ �
p(t)

!
f(h0

p
�p(t0)+�p (t0))

As they depend on a small set of parameters (in particular they don't de-
pend on the size N ), these equations are of great help for anticipating the
dynamics of large neuronal assemblies (see next section).

The other mathematical main result we proved in [12] is the propagation
of chaos : at time 0, the activation states of the neurons are chosen indepen-
dent from each other. But from time 1 to T, as the net is fully connected,
many relations take place between the neurons. We call propagation of chaos
the property of the activation states (xpi ) to become independent random
vectors (of size T + 1) when the size N of the network grows to in�nity.
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Figure 1: Bifurcation map derived from mean-�eld equations. The
map describes 4 di�erent dynamical regions when varying d (mean shift) and
g (gain). Other parameters are J = 1, ��1 = 0, �1 = 0, ��2 = 0:3, �2 = 0

4. Dynamical properties of the mean-�eld process

The mean-�eld equations (2) (3) (4) describe a dynamical process which is
easy to display with the use of computer simulations, and helps to study these
equations when time t grows to in�nity. They have been found to �t very well
the behavior of large-size neural assemblies [12]. In this general framework, we
restrict the range of the parameters in order to describe statistically inhibitory
and excitatory in
uences and to rise up speci�c dynamical behaviors. We take

as transfer function fg(x) =
1+tanh(gx)

2 , of gain g, for the states xpi (t) to be
comprised between 0 and 1. The synaptic weights are described with only
two parameters J (reference standard deviation) and d (mean shift), according
to the following statements: �J11 = Jd, J11 = J , �J12 = �2Jd, J12 =

p
2J ,

�J21 = Jd, J21 = J , �J22 = 0, J22 = 0. At �nite size, inhibition and excitation
characterize the mean in
uence of a population towards their receptors. As

the individual laws of the synaptic weights are N (
�Jpq

nq
; (J

pq)2

nq
), they tend in

any case towards a centered Dirac when n1; n2 ! 1. Moreover, inhibitory
neurons have no connections towards inhibitory population. This last point is
motivated by biological considerations (see [11]).

excitators
-

J21

�

J12
inhibitors

�
� -

J11

Given some parameters (namely J = 1, ��1 = 0, �1 = 0, ��2 = 0:3, �2 = 0),
we iterate the mean-�eld dynamics for di�erent values of g and d. Two kinds of
bifurcations can take place when g and d vary. These bifurcations are displayed
on Figure 1. The continuous line gives the destabilization of equation (4) as
a transition between a �xed point dynamics and a gaussian process (seen as a
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Figure 2: Synchronized chaotic dynamics on a �nite-sized network. -a-
Stationnary dynamics x1i (t) of 20 excitatory neurons, on 200 time steps. Inner
periodicity is 5. -b- m1(t) = 1

n1

Pn1
i=1 x

1
i (t) displayed in the (t,t+ 1) space on

4000 time steps. Parameters are n1 = 100, n2 = 100, J = 1, d = 2, g = 6,
��1 = 0, �1 = 0, ��2 = 0:3, �2 = 0:1.

description of chaos at the thermodynamic limit). The dashed line, based on
the evolution equation (2), gives the transition between asynchronous dynamics
(�p(t) converges towards a �xed point �p) and synchronous dynamics (�p(t)'s
asymptotics oscillate). In the second case, the period of �p(t) is found to be
comprised between 4 and 6. These two lines de�ne four dynamical regions,
namely �xed point dynamics, plain chaotic dynamics, synchronized chaotic dy-
namics and plain synchronized dynamics. All these dynamical regions can be
found on �nite sized networks in the same range of parameters. An example of
synchronized chaotic dynamics is displayed Figure 2. In this particular exam-
ple, intermittent synchrony is followed by more chaotic dynamics. This kind of
dynamics evokes rythmic behaviours observed in the �rst steps of information
processing in brain.

5. Conclusion

The rigorous proof obtained for the mean-�eld equations and the propagation
of chaos con�rms the simulations and gives a solid basis to our work. These
equations describe with good accuracy the behaviour of large size random net-
works, whose dynamics can be given according to a small set of parameters.
Biological considerations helped us to de�ne the law of the synaptic weights in
order to describe inhibitory and excitatory in
uences. In such a model, mean-
�eld equations reveal strong phenomena of synchrony, and give the range of
parameters where they can be found. Such dynamics, observed on �nite-size
networks, could now be compared to real brain neuronal dynamics, in order to
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clarify the role of inhibitors in synchronization processes.
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