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Abstract. We present conditions for absolute stability of recurrent neural net-
works with time-varying weights based on the Popov theorem from non-linear
feedback system theory. We show how to maximise the stability bounds by deriv-
ing a convex optimisation problem subject to linear matrix inequality constraints,
which can efficiently be solved by interior point methods with standard software.

1 Introduction

One of the most exciting properties of recurrent neural networks (RNN) is their abil-
ity to model the time-behaviour of arbitrary dynamical systems [6]. With a number of
schemes available which incrementally adapt a network using time-dependent error sig-
nals [13] recurrent networks can solve identification and adaptive control tasks in larger
systems [8,14]. In such applications the proper functioning of the control system then
crucially depends on the the dynamical behaviour of the network.

Thus one of the most investigated issues in RNN theory is stability, especially the
existence and uniqueness of a global asymptotically stable (GAS) equilibrium (for in-
stance [12,11,7] and the references therein). If it exists we obtain a unique mapping
from constant inputs to the equilibrium which is used in optimisation applications to
avoid spurious responses and local minima [5]. Further in control applications with
time-varying input a GAS equilibrium of the unforced dynamics ensures the existence
of a unique mapping from the input to the output function space. As already pointed
out in [7] a GAS equilibrium also avoides the need to reset activations when changing
inputs because the location of the equilibrium does not depend on the initial conditions.

Most of the stability results derived so far do not account for time-variation in the
weights, which can be caused as well by adaptation as by delays or perturbations in the
connections eg. noise in hardware implementations. The introduction of such uncer-
tainty in the parameters causes the dynamical equations describing the corresponding
recurrent network to become non-autonomous and then naturally they are much harder
to analyse. The corresponding stability results must become absolute stability results:
they must hold for all possible variations in some specified range. In Section 2 we dis-
cuss the common approach to deal with this complexity and show that it leads to com-
putationally intractable conditions. In Section 3 we present a different scheme to reduce
this complexity with the help of the Popov stability criterion. In Section 4 we show how
to formulate some resulting optimisation problems and finally add some discussion.
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2 Time-varying weights in recurrent networks

A recurrent neural network subject to adaptation can generally be described as system

_x(t) = �Ax(t) + (W +�W)�(x(t)); (1)

wherex 2 R
n is the state vector,A = diagfaig > 0 a positive diagonal matrix,

the time-stationary weight matrix is denoted byW 2 R
n�n , and�(x) is a non-linear

vector function, which issector bounded, i.e. can be rewritten as(�(x))i = 'i(xi) =
ki(xi)xi with ki(xi) 2 [0; 1] (e.g.�(x) = tanh(x)). Note that theki are autonomous
parameters as they depend on time only through the statexi. To account for the time
changes of the weights we introduce in (1) the additional interval matrix�W with
unknown, independently varying parameters�!ij(t) 2 [�ij ; �ij ]. As opposed to the
autonomouski these parameters are non-autonomous as they depend on time in some
unknown way. Below we will use the Popov theorem to draw on this difference and to
address the following absolute stability problem:Find conditions on the weight matrix
W, the non-linear functions'i, and the parameters�ij ; �ij such that for all variations
of�wij(t) within its given range the network (1) is GAS.

So far this problem has mainly been studied as a special case of a time-varying
linear system_x = B(t)x, whereB(t) is an element of the convex polytopeB of n� n
matrices obeying then2 interval restrictions on their elementsbij(t) that result from
the constraints on theki and�wij . In [16] only the parametrisation of then non-linear
functions'i(xi) = ki(xi)xi is studied and criteria relying on the parallel solution of2n

Lyapunov equations for the2n vertices of the corresponding smaller matrix polytope
are given together with a very conservative sufficient conditionkA�1Wk < 1. Inclusion
of N time-varying weights in this approach then requires to solve simultaneously the
corresponding2N Lyapunov equations.

The same approach of parametrising only the non-linearity is taken also in [3],
where conditions based on matrix measures are given and lead to simple conditions
if also the slopes_'i(xi) are bounded. As shown in [4] inclusion ofN time-varying
weights in this approach requires to prove[Bi]

S = Bi + BTi < 0 for all 2N symmet-
ric parts[Bi]S , whereBi is a vertex of the polytopeB . Though this can in principle
be done by interior point methods [1] (as also the solution of Lyapunov equations in
[16]) the large number of vertex matrices makes this intractable in practice and in both
approaches it is not distinguished between intervals resulting from time-varying (non-
autonomous)�wij and time-invariant (autonomous)ki.

The only conditions which use this additional information are derived in [5], where
the matrix�W is regarded as disturbance matrix added to the time-invariant system (1)
with �W = 0, which is shown to be GAS if there exists a positive diagonal matrixD

such that

[(D(�W + A))]S > 0: (2)

Then there can either be used a conservative bound on the maximal allowed total de-
viation

P
ij j�wij j, which depends on the matrixD and needs the computation of a

factorisation ofD(�W + A) = LTL, or we have to compute once more eigenvalues
for the2n

2

vertex matrices derived from�W. Also in this approach it is intractable to
evaluate or maximise the stability bounds on�W in an computationally efficient way.
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Fig. 1. (a) The minimal recurrent network with time-varying weightw12 +�!12 . (b) The corresponding feedback circuit
according to (3) with modified weight matrixeW and additional feedbackk12 to account for the time-varying�w12 .

3 Stability with the Popov theorem

In the following we give an alternative approach to avoid the computational explosion
using the vertices of the ’uncertainty polytope’B . We achieve this in two steps, (i) we
rewrite the system (1) to express the time-dependence of each�wij(t) by an additional
parameterkij(t), which is alsosector bounded, and (ii) we regard the resulting system
as linear system with non-linear partially time-invariantki(xi)xi and partially time-
varyingkij(t)xj feedback, which allows to apply the well known Popov theorem from
non-linear feedback system theory [2].

We illustrate the main idea with the help of the ’minimal’ network shown in Fig.
1(a), whereA = I,W =

�
0 w12

w21 0

�
and�W =

�
0 �w12

0 0

�
, which we rewrite as
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wherek1(x1); k2(x2) 2 [0; 1] (as in the general case allki(xi)), andk122 [0; �12��12]
characterises the uncertainty in the weightw12. The systems in the form (1) and (3) are
equivalent because(w12 +�!12(t)) = (!12 ��12 + k12(t)) for somek12(t) and we
will prove stability for all possiblekij(t) in its given range. The resulting feedback loop
is shown in Fig. 1(b).

In the general case letN be the number of connections for which�wij 6= 0 , then
we have

_x = �Ax+ eWu; y = Cx; u = K(t)y; (4)

where the matrixeW 2 R
n�(n+N) includes first then � n matrixW + �W and then

one column with a single entry 1 for each�wij which is then multiplied bykij(t) 2
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[0; �kij ] with �kij=�ij��ij . We get furtherK(x; t) = diagfki(xi); kij(t)g 2 R
(n+N)2

andC 2 R
(n+N)�n is easily constructed as appropriate. The systems (1) and (4) are

equivalent but (4) is in the standard form of a linear control system with inputu and
input matrix eW, outputy and output matrixC, and non-linear sector bounded feedback
u = K(x; t)y. Therefore we can apply the multivariable Popov theorem as for example
in [2],[10].

Theorem 1. The system (1) is absolute stable for all�wij(t) 2 [�ij ; �ij ] and all
non-linear time-stationary feedback functions'i(xi) = ki(xi)xi; ki(xi) 2 [0; 1], if
there exist diagonal matricesP = diagfpi; pijg > 0,Q = diagfqi;0g > 0 such that

Re [M({!)] = Re
�
P((I+ {!Q)G({!)� �K�1)

�
< 0; for all ! 2 [0;1]; (5)

whereRe [M] = 1
2 (M

� +M) denotes the hermitian part of the complex matrixM and

G({!) = C(A + {!I)�1 eW 2 R
(n+N)2 is the frequency matrix of the system (4) and

�K�1 = diagfI; �k�1
ij g.

Note that the firstn rows inG({!) correspond to the time-invariantki, which allows to
include additional parametersqi > 0; i = 1::n in this range, whereas the followingN
rows correspond to the time-varyingkij(t) where we haveqij = 0.

Remarks:

1 If W is normal (W�W = WW�) andA = I we showed previously that it is possible
to derive efficient graphical tests involving the eigenvalues ofW only [15].

2 The condition (2) is a special case of (5) when�W = 0. Then we getC = I and
can chooseP = DA;Q = A�1 for any positive diagonalD, which removes the
frequency dependence in (5) and yields

(5) = [D(W � A)]S < 0, [D(�W + A)]S > 0 = (2):

3 Also the norm bound derived in [16] can be obtained from (5) if�W = 0 andC = I.
Then chooseP = I;Q = 0 and use that

kA�1Wk < 1) Re
�
(I+ A�1{!)�1A�1W

�
< 1) (5):

4 Maximisation of the stability range

If maximal bounds on�wij are given, e.g. we deal with noise or some normalisation
in the adaptation scheme, then we can directly use the condition (5) in the frequency
domain in two steps. First we prove it for! = 0 and then evaluate the determinant of
detRe [M({!)] as a function of!. If it has no real roots, then no eigenvalue changes
sign and we can conclude from the case! = 0 for stability for all! ( for an efficient
algorithm see [10]).

The first step can be put into a form suited for application of interior point polyno-
mial methods, which efficiently solve convex optimisation problems subject to linear
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matrix inequalities (LMI) constraints [1] (for links to standard software see [9]). Before
setting! to zero we chooseQ to remove the frequency dependence in the firstn coor-
dinates, i.e.Q = A�1, andP = diagfpiai; pijg, which results in the condition (2) if
only the firstn � n block ofG({!) is considered (see Remark [2], Sec. 3). We obtain
the following LMI feasibility problem

find P subject to Re
�
P diagfA; I; Ig(CA�1W � �K�1)

�
< 0; diagfPg > 0:

In the general case we want also to maximise the sector bounds�kij . In this case we
can use the famous Kalman-Yakubovich-Lemma to show that (5) is equivalent to the
problem to find matricesH = HT > 0 2 R

n�n ;P, andQ such that 
AH+ HTA H eW + ACTQ+ CTPeWTH+QCA+ PC QC eW +WTCTQ� 2P �K�1

!
< 0: (6)

In case of fixed�K�1 we can now use (6) as LMI constraint on the variablesH;P;Q
and solve the corresponding feasibility problem, but regarding also�kij as a variable for
optimisation leads in the constraint matrix (6) to the termP �K�1 where bothP and �K�1

are optimisation variables. To avoid such a quadratic term which destroys the linear
dependence of the matrix on the variables we define new variablesri = pi; rij =
pij=�kij , R = diagfri; rijg and substitute in (6)R instead ofP �K�1. Then we can solve
the optimisation problem

maximise
X
ij

pij � rij subject to

(6);H = HT > 0;P > 0;Q = diagfqi;0;0g > 0;R > 0;

which leads to large values of the�kij because ifpij is large andrij = pij=�kij is
small then the corresponding�kij , which yields the upper stability bound, must be large
as well. This formulation also allows to include easily constraints like removing or
freezing a connectionwij , which corresponds to setrij to the corresponding value and
exclude it from the optimisation. The optimal solution of the previous problem then is
a good starting point for the new one and in general yields fast convergence.

5 Discussion

We give a new approach to the computation of stability ranges for time-varying weights
which leads to convex optimisation problems tractable with interior point methods.
Though we discuss optimisation of the upper bound of the stability range only, we
could minimise the lower bound as well, and also, adding additionalN parameters,
upper and lower bounds simultaneously. In the contrary to the theoretical derivation,
which uses well known but advanced concepts from non-linear system theory, the re-
sulting conditions are ’ready to apply’ with standard software.

It is interesting that the to our knowledge best known condition for time-invariant
networks (2) derived in [5] appears to be a special case of the frequency approach given
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here, though the Lyapunov function used in [5] is not a Lur’e-Postnikov function which
can be constructed from the the LMI (6). It seems that the condition (2) may be the best
possible if the non-linearities are sector bounded in [0,1] and time-invariant.

However, usually the squashing functions used in neural networks have additional
properties, for instance they are bounded which in turn boundskx(t)k and leads to
smaller sectors[ki; 1] for the parameterski(xi). Further they are slope restricted and
even the sign of the second derivative may be known. The flexible and quite univer-
sal frequency conditions can also incorporate such information to improve the stability
bounds, which will be subject to future work.
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