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Abstract. We present conditions for absolute stability of recurrent neural net-
works with time-varying weights based on the Popov theorem from non-linear
feedback system theory. We show how to maximise the stability bounds by deriv-
ing a convex optimisation problem subject to linear matrix inequality constraints,
which can efficiently be solved by interior point methods with standard software.

1 Introduction

One of the most exciting properties of recurrent neural networks (RNN) is their abil-
ity to model the time-behaviour of arbitrary dynamical systems [6]. With a number of
schemes available which incrementally adapt a network using time-dependent error sig-
nals [13] recurrent networks can solve identification and adaptive control tasks in larger
systems [8,14]. In such applications the proper functioning of the control system then
crucially depends on the the dynamical behaviour of the network.

Thus one of the most investigated issues in RNN theory is stability, especially the
existence and uniqueness of a global asymptotically stable (GAS) equilibrium (for in-
stance [12,11,7] and the references therein). If it exists we obtain a uniqgue mapping
from constant inputs to the equilibrium which is used in optimisation applications to
avoid spurious responses and local minima [5]. Further in control applications with
time-varying input a GAS equilibrium of the unforced dynamics ensures the existence
of a uniqgue mapping from the input to the output function space. As already pointed
out in [7] a GAS equilibrium also avoides the need to reset activations when changing
inputs because the location of the equilibrium does not depend on the initial conditions.

Most of the stability results derived so far do not account for time-variation in the
weights, which can be caused as well by adaptation as by delays or perturbations in the
connections eg. noise in hardware implementations. The introduction of such uncer-
tainty in the parameters causes the dynamical equations describing the corresponding
recurrent network to become non-autonomous and then naturally they are much harder
to analyse. The corresponding stability results must become absolute stability results:
they must hold for all possible variations in some specified range. In Section 2 we dis-
cuss the common approach to deal with this complexity and show that it leads to com-
putationally intractable conditions. In Section 3 we present a different scheme to reduce
this complexity with the help of the Popov stability criterion. In Section 4 we show how
to formulate some resulting optimisation problems and finally add some discussion.



ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 369-374

2 Time-varying weights in recurrent networks

A recurrent neural network subject to adaptation can generally be described as system
x(t) = ©Ax(t) + (W + AW)P(x(1)), 1)

wherex € R"™ is the state vectolA = diag{a;} > 0 a positive diagonal matrix,
the time-stationary weight matrix is denoted by € R**", and®(x) is a non-linear
vector function, which isector bounded.e. can be rewritten 8@ (x)); = yi(z;) =
ki(x;)x; with k;(z;) € [0,1] (e.g.¢(x) = tanh(x)). Note that thek; are autonomous
parameters as they depend on time only through the staffo account for the time
changes of the weights we introduce in (1) the additional interval matvix with
unknown, independently varying paramete¥s;; (t) € [éij,Zij]. As opposed to the
autonomoug; these parameters are non-autonomous as they depend on time in some
unknown way. Below we will use the Popov theorem to draw on this difference and to
address the following absolute stability probléfmd conditions on the weight matrix

W, the non-linear functiong;, and the parameteréij,Zij such that for all variations

of Aw;; (t) within its given range the network (1) is GAS.

So far this problem has mainly been studied as a special case of a time-varying
linear systemx = B(t)x, whereB(t) is an element of the convex polytofieof n x n
matrices obeying the? interval restrictions on their elementis (¢) that result from
the constraints on thie; and Aw;;. In [16] only the parametrisation of thenon-linear
functionsyp; (z;) = k;(z;)x; is studied and criteria relying on the parallel solutior2®f
Lyapunov equations for th#”* vertices of the corresponding smaller matrix polytope
are given together with a very conservative sufficient condjtidn'W|| < 1. Inclusion
of N time-varying weights in this approach then requires to solve simultaneously the
correspondin@” Lyapunov equations.

The same approach of parametrising only the non-linearity is taken also in [3],
where conditions based on matrix measures are given and lead to simple conditions
if also the slope;(z;) are bounded. As shown in [4] inclusion &f time-varying
weights in this approach requires to prd2g]® = B; + BY < 0 for all 2V symmet-
ric parts[B;]°, whereB; is a vertex of the polytop®. Though this can in principle
be done by interior point methods [1] (as also the solution of Lyapunov equations in
[16]) the large number of vertex matrices makes this intractable in practice and in both
approaches it is not distinguished between intervals resulting from time-varying (non-
autonomous)\w;; and time-invariant (autonomous).

The only conditions which use this additional information are derived in [5], where
the matrixAW is regarded as disturbance matrix added to the time-invariant system (1)
with AW = 0, which is shown to be GAS if there exists a positive diagonal m&trix
such that

[(D(EW + A))]® > 0. )
Then there can either be used a conservative bound on the maximal allowed total de-
viation 3, | Aw;;|, which depends on the matrlx and needs the computation of a
factorisation ofD(<W + A) = LTL, or we have to compute once more eigenvalues

for the2"” vertex matrices derived fromW. Also in this approach it is intractable to
evaluate or maximise the stability boundsAkV in an computationally efficient way.
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Fig. 1. (a) The minimal recurrent network with time-varying weight> + Awi2. (b) The corresponding feedback circuit
according to (3) with modified weight matri&/ and additional feedbadk; » to account for the time-varyinglw1s.

3 Stability with the Popov theorem

In the following we give an alternative approach to avoid the computational explosion
using the vertices of the 'uncertainty polytof’We achieve this in two steps, (i) we
rewrite the system (1) to express the time-dependence ot&ag}(t) by an additional
parameter;;(t), which is alscsector boundedand (i) we regard the resulting system
as linear system with non-linear partially time-invaridntz;)z; and partially time-
varyingk;; (t)z; feedback, which allows to apply the well known Popov theorem from
non-linear feedback system theory [2].

We illustrate the main idea with the help of the 'minimal’ network shown in Fig.
1(a), wherA =L, W = (2 “3?) andAW = (9 4u1z), which we rewrite as

wa1

i kyy1 Y1 10

1 =7 0 (w12<:>A12) 1 r1

1) = koyo | ~ o1 3
<$2> < 2> " <w21 0 0 k122?;23 Zi 01) \* o

wherek; (z1), k2 (z2) € [0, 1] (as in the general case &ll(z;)), andkia € [0, Aj2A,,]
characterises the uncertainty in the weight. The systems in the form (1) and (3) are
equivalent becaudeviz + Awia(t)) = (w12 © 4,5 + ki12(t)) for somek;»(t) and we
will prove stability for all possiblé;; (¢) in its given range. The resulting feedback loop
is shown in Fig. 1(b).

In the general case |é¥ be the number of connections for whichw;; # 0, then
we have

x = ©Ax + V~Vu, y=Cx, u=K(t)y, (4)

where the matritV € R**(»+N) includes first thex x n matrix W + AW and then
one column with a single entry 1 for eachw;; which is then multiplied by;; (t) €
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[0, k;]] with l_cij :ZU{:}éij' We get furtheK(x, t) = dlag{kl (l‘l), k'ij (t)} € R(n+N)2

andC e RN is easily constructed as appropriate. The systems (1) and (4) are
equivalent but (4) is in the standard form of a linear control system with inpand

input matrixW, outputy and output matrixC, and non-linear sector bounded feedback

u = K(x,t)y. Therefore we can apply the multivariable Popov theorem as for example
in [2],[10].

Theorem 1. The system (1) is absolute stable for dllv;;(t) € [4,;, Ai;] and all
non-linear time-stationary feedback functiopg(z;) = k;(z;)z;, ki(z;) € [0,1], if

there exist diagonal matricd® = diag{p;, p;;} > 0, Q = diag{g¢;, 0} > 0 such that

Re [M(w)] = Re [P((I + wQ)G(w) <K~ 1)] <0, forallw € [0,00],  (5)

whereRe [M] = £(M* + M) denotes the hermitian part of the complex makixand
G(w) = C(A + wI)"1W € R"+M? is the frequency matrix of the system (4) and

K~! = diag{L k;;'}.

Note that the first rows inG(w) correspond to the time-invariakht, which allows to
include additional parametegs > 0,7 = 1..n in this range, whereas the followirng
rows correspond to the time-varyihg; () where we have;; = 0.

Remarks:

1 If Wis normal (V*W = WW*) andA = I we showed previously that it is possible
to derive efficient graphical tests involving the eigenvalued/ainly [15].

2 The condition (2) is a special case of (5) whaiV = 0. Then we geC = I and
can choosd® = DA,Q = A~! for any positive diagonaD, which removes the
frequency dependence in (5) and yields

(5) = [D(W <A)]® <0 & [D(«W +A)]° >0=(2).

3 Also the norm bound derived in [16] can be obtained from (8)\¥ = 0 andC = 1.
Then choos® =1I,Q = 0 and use that

IJAT'W|| < 1= Re [IT+A ) 'ATIW] < 1= (5).

4 Maximisation of the stability range

If maximal bounds om\w;; are given, e.g. we deal with noise or some normalisation
in the adaptation scheme, then we can directly use the condition (5) in the frequency
domain in two steps. First we prove it far= 0 and then evaluate the determinant of
det Re [M(:w)] as a function ofv. If it has no real roots, then no eigenvalue changes
sign and we can conclude from the case= 0 for stability for allw ( for an efficient
algorithm see [10]).

The first step can be put into a form suited for application of interior point polyno-
mial methods, which efficiently solve convex optimisation problems subject to linear
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matrix inequalities (LMI) constraints [1] (for links to standard software see [9]). Before
settingw to zero we choos® to remove the frequency dependence in the firsbor-
dinates, i.eQ = A~!, andP = diag{p;a;, p;; }, which results in the condition (2) if
only the firstn x n block of G(:«w) is considered (see Remark [2], Sec. 3). We obtain
the following LMI feasibility problem

find P subjectto  Re [P diag{A,I,I}(CA™'W &K ~")] < 0,diag{P} > 0.

In the general case we want also to maximise the sector bciuﬁda this case we
can use the famous Kalman-Yakubovich-Lemma to show that (5) is equivalent to the
problem to find matricetl = H” > 0 € R**", P, andQ such that
AH + HTA HW + ACTQ + CTP 0 ©)
WTH + QCA+PC  QCW +WTCTQ &2PK !

In case of fixedC~' we can now use (6) as LMI constraint on the variable®, Q

and solve the corresponding feasibility problem, but regardingiajsas a variable for
optimisation leads in the constraint matrix (6) to the t&ki! where bottP andk !

are optimisation variables. To avoid such a quadratic term which destroys the linear
dependence of the matrix on the variables we define new variaples p;,r;; =
pij/kij, R = diag{r;,r;;} and substitute in (6} instead ofPX~!. Then we can solve

the optimisation problem

maximise Zpij &1y subject to
ij

(6),H=H" >0,P >0,Q = diag{¢;,0,0} > 0,R > 0,

which leads to large values of tHTej because ifp;; is large andr;; = pij/l_cij is
small then the correspondirig;, which yields the upper stability bound, must be large
as well. This formulation also allows to include easily constraints like removing or
freezing a connectiow;;, which corresponds to sef; to the corresponding value and
exclude it from the optimisation. The optimal solution of the previous problem then is
a good starting point for the new one and in general yields fast convergence.

5 Discussion

We give a new approach to the computation of stability ranges for time-varying weights
which leads to convex optimisation problems tractable with interior point methods.
Though we discuss optimisation of the upper bound of the stability range only, we
could minimise the lower bound as well, and also, adding additidhgarameters,
upper and lower bounds simultaneously. In the contrary to the theoretical derivation,
which uses well known but advanced concepts from non-linear system theory, the re-
sulting conditions are ready to apply’ with standard software.

It is interesting that the to our knowledge best known condition for time-invariant
networks (2) derived in [5] appears to be a special case of the frequency approach given
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here, though the Lyapunov function used in [5] is not a Lur’e-Postnikov function which
can be constructed from the the LMI (6). It seems that the condition (2) may be the best
possible if the non-linearities are sector bounded in [0,1] and time-invariant.

However, usually the squashing functions used in neural networks have additional
properties, for instance they are bounded which in turn bolixds)|| and leads to
smaller sectorgk;, 1] for the parameters;(z;). Further they are slope restricted and
even the sign of the second derivative may be known. The flexible and quite univer-
sal frequency conditions can also incorporate such information to improve the stability
bounds, which will be subject to future work.
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