
An Integer Recurrent Artificial Neural Network
for Classifying Feature Vectors

Roelof K Brouwer PEng, PhD

University College of the Cariboo, Canada

Abstract: The main contribution of this report is the development of an integer
recurrent artificial neural network (IRANN) for classification of feature vectors.
The network consists both of threshold units or perceptrons and of counters,
which are non-threshold units with bi-nary input and integer output. Input and
output of the network consists of vectors of natural numbers. For classification
representatives of sets are stored by calculating a connection matrix such that
all the elements in a training set are attracted to members of the same training
set. The class of its attractor then classifies an arbitrary element if the attractor
is a member of one of the original training sets. The network is successfully
applied to the classification of sugar diabetes data and credit application data.

Introduction

One type of neural network commonly used for classification is a multilayer
perceptron (MLP), a feed forward net with one or more layers of nodes between the
input and output nodes and with back-propagation for training (Werbos 1974). It has
problems of long training time, getting stuck in local minimum and poor
generalization.
Another class of neural networks useful for classification is the class of Recurrent
Neural Networks an example of which is the Hopfield network (Hopfield, 1986). The
main advantages of the Hopfield network and the recurrent network proposed here
versus the back-propagation trained multilayer perceptron, MLP (Werbos 1974), is
the simplicity of the learning procedure compared to back-propagation and the
relative ease with which the recurrent network can be implemented in hardware.
The proposed network is a 3 layer recurrent neural network with two hidden layers
whose state vector components are natural numbers rather than binary or bi-polar.
The feature vectors are not converted to a vector of binary values before input as in
the case of a Hopfield network.
This paper starts with a brief description of what is meant by the standard unary form
of representing natural numbers and next describes the architecture and dynamics of
the proposed network. It then describes the two ways of using a recurrent network for
classification and how the network proposed here may be used for classification.

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 307-312

Finally the results of using the network for classification are compared to results
obtained by using other methods.

Unary Standard Form

For later description of the architecture and dynamics of the network it is useful to
define the standard unary representation of natural numbers. The unary representation
of a natural number is a string of 1's equal in length to the natural number. If the
length of the string is to be fixed then the filler will consist of 0's. For example the
string 1 0 1 0 1 1 0 1 represents the value 5. This manner of representing a natural
number is called unary code. The unary standard form is the case where the 1's
precede the 0's. For example 11100 with a string length of 5 represents the value 3.
An array of integers can also be represented by a string of 0's and 1's. For example if
the field widths or string lengths for representation of individual integers are 4 and 3
then the standard unary form for the vector 2, 1 would be 1 1 0 0 1 0 0.
Let i(b) be the function returning the number of 1’s in a binary sequence. Let u(w,x),
return a binary sequence of length w, and with x 1’s where all the 1’s precede the 0’s.
Let iv(p,b) return an integer vector where p is a vector of integers, which partitions
the binary sequence so that each part is converted into an integer using the function
i(b). Thus iv((4,3), (1010110)) is equal to (2,2). Let uv(p,x) return the catenation of
binary strings u(pi,xi) i = 0,1,… from a vector of natural numbers. For example
uv((3,4,2),(2,2,1)) would be 1 1 0 1 1 0 0 1 0.

Description of Architecture

In this network, shown in Figure 1, there are 3 distinct layers consisting of two fully
connected hidden layers and one input-output layer
(the first layer of counters (i.e. they simply sum their
input)) is repeated on the right in the diagram. The
state of the network is presented by a vector of natural
numbers, which are the activation values of the units in
the input/output layer. The ith component of this vector
for i = 0,1,..k-1 is equal to the number of neurons in
the ith section of the 2nd hidden layer with activation
values greater than their thresholds. The function of
the 1st hidden layer is to convert natural numbers into
their standard unary representation.
During iterations or state changes, the non-threshold
units in the input/output layer simply sum their binary
input and carry out the operation i(p,a). Each unit in
the 1st hidden layer has a fixed non-adaptive threshold
and exactly one input. The threshold values for these
units are 1,2, .. corresponding to the position in the

identical layer
for input and output

hidden fully
connected

layers

1

2

4

3

3

2
1

2

threshold
values

1

Figure 1

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 307-312

section to which the unit belongs. Only the connection matrix between the hidden
layers and the threshold values for the 2nd hidden layer are adaptive.

Network Dynamics

Transitions are assumed to be synchronous and therefore matrices can pre-multiply
state vectors to represent weighting of inputs to units. The dynamics are such that a
state transition is produced by T(x) ← iv(p,((W,t).(uv(p,x,), -1)) ≥ 0). The function
uv(p,x) converts the vector x into a binary vector using partition vector p. After
catenation with a -1 the result is premultiplied by the appended connection matrix
W,t where t is a vector of thresholds. This result is thresholded using 0 to produce
another binary vector (the function y ← x ≥ 0 is such that yI = 0 if xI < 0 and 1
otherwise). This new result is converted back to a vector of natural numbers using
the function iv(x). The purpose of the conversions is that internal states with the same
number of 1's in each partition be equivalent.

Storing Fixed Points

If there is a sequence of states y(i) i = 0,.. k such that
 y(i) =T(y(i-1)) i =1, 2, .. k
and
 y(k) = T(y(k))
then y(k) is an attractor of y(0) and y(k) is called a fixed point (Kamp, 1990). y(0) will be
called an attractee. Note that an attractor is an attractee which is attracted to itself and
that all the states y(i) i=0,1..k are attractees for y(k).
An auto-associative memory system in which fixed points are stored may be used for
classification by computing a connection matrix such that prototypes, representing the
classes involved in classification, become fixed points of the corresponding network.
The class of an element to be classified is taken to be the class of the prototype state
to which it is attracted. The training algorithm for the fixed point mapping considered
here is based on the perceptron learning rule. Of course only the connection matrix
between the two perceptron layers has to be determined.
Let us consider a single field of perceptrons in the 2nd hidden layer. The goal is that a
certain number of perceptrons must be on. If the desired number is less than the
actual number then certain of the on-neurons must be turned off by adjusting their
weights. If the desired number is greater than the actual number then certain of the
off-neurons must be turned on. Several strategies for determining which additional
units should be turned off or on are possible. The strategy chosen here is to modify
the weights of the neurons whose activation values are closest to their thresholds. We
may call this the "least change" algorithm. For a particular field let nd be the desired
number of 1's, let na be the actual number of 1's, and let k be na - nd. If k > 0 then the
activation values of k of the neurons must be turned negative. If the neurons in the
field are arranged in descending order of activation values then the ideal neurons to
change are neurons nd, nd + 1, ... na - 1. Note that neurons 0, 1, .. na - 1 are positive and

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 307-312

the rest are negative. Neuron 0 is the first neuron in the field under discussion after
the neurons have been relabeled for ordering. If k < 0 then the activation values of k
of the neurons must be turned positive. Again if the neurons in the field are arranged
in descending order of activation values then the ideal neurons to change are neurons
na, na + 1, .. nd - 1.
For example let the desired integer value for a field be 4 in a field width of 7 and let
the actual pattern be 1001010. This means that one additional neuron needs to be
turned on. Also assume the following.

Indices of neurons 8 9 10 11 12 13 14
Pre-threshold values 4.0 -0.1 -0.3 3.1 -0.05 1.2 - -8.1
Post-threshold values 1 0 0 1 0 1 1
Ordering of neurons 8 11 13 12 9 10 14
(by pre-threshold values)
Post-threshold values 1 1 1 0 0 0 0

Based on the new ordering and for "least change" strategy the 12th element should be
modified to give a positive activation value. On the other hand if the desired integer
value is 2 then the 13th element should be modified.
Once it has been determined in each field which neurons must have their post-
threshold values reversed a target binary vector, d, has been established which can be
used in modifying the connection matrix using the expression following. For n
perceptrons, each with the same n inputs, the equations for learning become in matrix
form (Brouwer 1995)
 e = d-a
 W' = W+ e⊗ xt

 t' = t - e
e is the error vector, a is the actual vector of neuron states for the 2nd hidden layer, d is
the desired output vector and x is the vector of outputs of the 1st hidden layer. The
symbol ⊗ denotes the vector cross product. This is the perceptron learning rule
essentially.

Hetero-associative Memories for Classification
(Incorporating the attractee-attractor relation in the Network Explicitly)

Brouwer (1995) describes a method of training a Hopfield style network, a GDHN,
for classification which focuses on the attractees rather than on the attractors. Rather
than training the network so that the class exemplars become fixed points or
attractors, training is done so that the class exemplars are attracted to particular
attractors.

This approach is based on the point of view that (1) a distinction should be drawn
between exemplars and prototypes in incorporating sample data in the network and
(2) training should explicitly include the storing of the relationship between attractees
and their attractors.

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 307-312

Algorithms for storing the attractee-attractor(Ae-Ar) relation are based on the
transformation y = AT (x) (Brouwer, 1995). x here is the attractee that is attracted to
attractor y. AT(x) is defined in terms of T(x) by
 ∃ an integer k > 0 ∋ AT (x) = T (k)(x) ⇔ T (k)(x) = T (k-1)(x)

T(k)(x) is defined by the recursive expression
 T (0)(x) = x
 T (k)(x) = T(T (k-1)(x))
To permit the generalization required for classification of unclassified vectors, the
attractors should serve as attractors not only for elements in the training set but also
for elements similar to elements in the training set. The class of an arbitrary input is
found if the input is attracted to an element of one of the attractor sets for the training
sets.
Generally in the classification of feature vectors prototypes are not available as
potential attractors. In that case a set of all allowable attractors (which may be the set
of training elements to which the attractee belongs) is provided for each attractee or
independent state and through training actual attractors are found. The network thus
may be trained such that all elements in a training set are attracted to elements in the
same training set. The target attractor for an attractee is the training element in the
same set as the attractee that is closest to the existing attractor for the attractee. Once
a target integer vector for an attractee has been selected the training method of the
previous section can be applied. For distance between two elements we may use the
Euclidian distance.
The available data is broken up into purely training elements (for adapting the
connection matrix), validation elements (to check generalization) and testing
elements. At the end of each epoch the best connection matrix so far (in terms of
generalization ability) is replaced (Gallant 1990) if a connection matrix is found
which generalizes better. The training is discontinued when the percent correctly
classified reaches a predetermined value or after a certain number of epochs have
passed.

Simulation Results - Classification of Sugar Diabetes Patients and
Credit Applicants

Following are the results of applying the method described in this paper to sugar
diabetes data and credit data. This is a two class problem where the objective is to
predict whether a patient would test positive for diabetes according to World Health
Organization criteria (Michie, 1994). This dataset was originally donated by Vincent
Sigillito, Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20707
and was constructed from a larger database. Several statistical and neural networks
were tested on this data (Michie, 1994). Logdisc provided the best test accuracy at
77.7 % and the worst of 67.6 % was provided with k-NN. Another data set to which
the method has been applied is the Australian credit data set consisting of two classes,

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 307-312

14 attributes or features and 690 observations (Michie 1994). Of 22 other methods
applied to this according to Michie(1994) the best accuracy achieved was 86.9 %
with Cal5 and the worst was 80% with Quadisc. Backprop produced an accuracy of
84.6 %.
The results obtained by the author's method are as follows. In case of the diabetes
data 75.6 % of 214 test elements were correctly classified using 4 hidden perceptrons
per feature and a training time of 16 epochs. In case of the credit data 85% of 244 test
elements were correctly classified using 2 hidden perceptrons per feature and a
training time of 32 epochs. Note that a real valued feature value is represented by a
natural number according to the "thermometer code"(Gallant 1990). The range of the
real variable to be represented is divided up into intervals which are usually chosen to
be of equal size. The intervals may be numbered from 0 to n-1. The integer
corresponding to a real value is then the interval to which the real value belongs.

Conclusion

A recurrent network has been proposed which has been shown to be useful in
classification of feature vectors. Its advantages are ease of training and accuracy for
classification. The network consists of two kinds of units. One counting unit is
required for each feature in the feature vectors. The other units are perceptrons. The
number of perceptrons required per feature is small. Further study may include
improvements or fine-tuning of the algorithm.

References

Brouwer, R. K. (1995). A Method for Training Recurrent Neural Networks for
Classification by Building Basins of Attraction. Neural Networks, 8/4, 597-603.
Gallant, S.I. (1990) Perceptron-Based Learning Algorithms. I.E.E.E. Transactions on
Neural Networks. Vol. 1. No. 2. June 1990 pp. 179-91.
Hecht-Nielsen, R. (1989). Neurocomputing. New York: Addison-Wesley.
Hopfield, J. J. & Tank, D. W. (1986). Computing with Neural Circuits: A Model.
Science 233: 625-633.
Kamp, Y., Hasler, M.(1990) Recursive Neural Networks For Associative Memory,
John Wiley and Sons.
Michie, D., Spiegelhalter, D. J. & Taylor, C. C. (1994). Machine Learning, Neural
and Statistical Classification Ellis Norwood.
Werbos, P.J. (1974). Beyond Regression: New Tools for Prediction and Analysis in
the Behavioral Sciences. Doctoral Dissertation, Appl. Math., Harvard University,
Mass.

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 307-312

