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Abstract: Open and organized systems such as living organisms regulate their
exchanges in order to maintain adaptation to their environment. When one re-
duces a biological organism to its central nervous system (CNS), adaptation
comes up as an information flow exchange between the CNS and its environ-
ment. Though, the main mechanism used so far to explain learning is derived
from the Hebb's hypothesis and it relies on structural modifications of the net-
work through changing weights on connections. The double loop concept pro-
posed here is the core of a structural and dynamic model tackling with incre-
mental learning in large neural networks. A computer simulation of this concept
is briefly described, then is given an equivalent mathematical dynamic system
that is related to Thomas' biological feedback theory. Due to the double loop ar-
chitecture, the observed dynamics shows that the model gives a built-in func-
tional answer to the stability/plasticity dilemma.

1. Introduction

Since the insight of connectionism made by D. Hebb, a large number of models have
been proposed (review in Rumelhart & al. [10]). Compared to each other, all of these
models differ by their architecture, algorithm, type and necessary features of data, and
type of learning. While they have their own advantages and their specific features that
make them more suitable to some kind of application, they all rely on the heb-
bian/anti-hebbian paradigm.

Many biological findings have corroborated the Hebb's hypothesis since it has been
proposed, putting more emphasis on the structural dimension of learning in artificial
neural networks (ANN). As a reverse proof of the biological hebbian mechanism,
epigenesis [2] proved that unused connections could even disappear, at least in the
peripheral nervous system. At the lowest-scale level, analytical descriptions of ionic
flows in axons and large dendrites give nowadays a perfect explanation of spike pro-
pagation in biological cells. Lastly, the NMDA receptor seems to have the necessary
features (voltage and ligand dependency) for realizing the hebbian paradigm.

On the other hand, when using a large-scale analysis, living organisms are described
as complex open systems relying on their exchanges with their environment for sur-

vival. In this case, emphasis is put on exchange flows. The contrast is strong between
the approach used in ANN, focused on low-level structural mechanisms, and the key

feature for system analysis, which is exchange flow.

A model that would meet both these requirements, e.g. in which both the structural
and flow angles would receive an expression, could help to understand how incre-
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mental learning takes place in large networks. This paper presents such a model that
gives room for learning, data and flow modeling, and that offers a built-in dynamic
functional answer to the stability/plasticity dilemma.

2. The double loop concept

Adaptive and learning systems use feedback signals to adjust the command signal that
achieves in the end the correct result. More precisely, nested loops are encountered
and we have shown in previous papers [6, 8] that such regular architectures are well
fit for incremental learning purposes.

2.1 The mental object

The proposed model uses the double loop mental object as a corner stone. A mental
object is defined as a dynamic flow running across a connectionist structure forming a
double feedback loop (scheme below). The mental object is a concept sharing features
from both connectionist and dynamic systems angles. Basically, every path of the
loop is a kind of synfire chain, as introduced by Abeles [1], but the use of two nested
feedback loops gives the mental object some special dynamic system properties. Ac-
tually, this model explicitly relies on a functional coupling between the connectionist
structure and the dynamic flow.

Considered as a dynamic system at steady state, the mental object evokes two coupled
and stabilized resonators oscillating on their own specific signal as long as the internal
flow is compatible with it. Considered as a connectionist structure producing a regular
flow of data (in the steady state case), the mental
object is a set of stabilized weights specifying con-
nections in the network. This set is the structural
description of the resonator's specific signal. Nev-
ertheless, as the structure supports the flow, which
reinforces the structure, the connectionist and the
dynamic angles of a double loop mental object
cannot be split into pieces.

Indeed, the Hebb's law corollary in the double loop
model is the equivalence between learning and
adaptation to environment through an established
steady state. Local application of Hebb's law at the cell level induces mutual rein-
forcement between the structure and the flow over it. In order to reach a steady state,
the connectionist structure and the dynamic flow have to reinforce each other.

3. Computer simulation
3.1 Cells

In our computer implementation of the model, each cell sets up a path for a unidirec-
tional flow going from its dendritic end to its axonal end. Excitatory and inhibitory
effects are properties of cells, so all efferent connections of an excitatory (inhibitory)
cell are positive (negative) values. Every input connection is weighed, this weight
being modified over time with a hebbian rule, adapted to an epigenetic mechanism.

Environment
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Epigenesis is a biological phenomenon that illustrates the competitive momentum at
work between connections during the psychomotor system maturing phase [2]. In the
double loop model, taking inspiration from this mechanism, the number of completely

efficient connections on each dendrite is limited by a stabilizing factor that is an es-
sential resource for any connections to improve its weight during learning. This epi-

genetic competition is completed in our model by a process distributing information

over a subset of connections in order to achieve a diverging process in the network.

Therefore, the set of weights underlying the connectionist structure is naturally un-
stable: its natural trend drives toward complete disconnection by decreasing all
weights to zero when no regular flows exist. This tendency is counter-balanced by
learning according to Hebb's law when a permanent and regular signal flow exists.
Here are the pieces of the typical double loops mental objects dynamic equilibrium:
the natural trend to forget is balanced by the stabilizing move of learning adaptation
through exchanges with the environment.

3.2 Network Architecture

For computational simulations of the network, we use two kinds of elements. The first
one gather the learning and computational parts of cells features together, and they are
called Computation and Learning Units (CLU). They are autonomous UNIX proc-
esses and simulate the activity of a
few dozens cells. The second element

is used for communication and it
relies on a UNIX inter-process facil-

ity called Shared Memory Segments
(SHM). The SHMs carry the values
produced by the cells in each CLU.
Both SHMs and CLUs may be ma-
nipulated independently, thus pro-
viding full facilities for building
different architectures with the
model. The number of SHMs used in
input and output of a CLU is locally
configured for each process, and a unique SHM may be used by many CLUs, forming
for instance a loop architecture as shown in the above scheme.

4. The double loop mathematical model

The mathematical model we propose here reorganize around the double loop concept
many data coming from different fields. On the one hand, we have found great sup-
port for trying to use dynamic systems in the results of W. Freeman [3] and the theory
of R. Thomas [13] about biological feedback. The set of equations described in this
paper is one chosen and modified from his attempt to show that one can build a cha-
otic dynamic system with a unique feedback loop [12].

On the other hand, there are biological data supporting our conception. M. Abeles [1],
as soon as '82, pointed out that time synchrony and phase lags may be the important
parameter in information coding. In the recent years, G. Buzsaki and his group [5, 9,
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11] and A. Villa [14] confirmed that information is encoded by cell-assemblies, rather
than by single cells, in spatio-temporal patterns. According to Buzsaki's group results
on interneuron activity, we aggregate a cell assembly as a unique functional unit [11],
and we consider its "effective value”, i.e. the sum ¢Ewas a unique variable.

Therefore, the model presented here considers the reciprocal influence of small cell-
assemblies, forming multiple layers and organized in double loops, rather than some
specific weights between cells. As the different coefficients in our system reflect these
relative influences and their variations, the system dynamic therefore illustrates the
behavior of a large network with structural coupling between the layered assemblies.

The proposed dynamic system for a double loop with 3 layers (x, y, z), or 3 CLUs of
the computer model, is the following:

ox/dt = K(1/x+y+2)x+sin((y/x+2)y +(z/x +Y)2)
dy/dt = K(A/x+y+2)y+sin((x/y+2)x+(z/x+Y)2)
dzfdt = K(I/x+y+2)z+sin((x/y + 2)x+(y/x +2)y)

where x, y and z, represents the global output of the three cell assemblies.
These values should be understood as the global product of all the cells values
by all the weights on their output connections.

where K*1/(x+y+z) is the relative effect of each assembly on itself, e.g. the
global result of internal interactions inside the layer of the loop. K is a constant
controlling this effect and, according to Thomas' results, it is supposed to be
globally inhibitory, which means negative and small (-1<K<0). This hypothe-
sis seems to be in accordance with some Buzsaki's group results [11].

where the [y/(x+2z)] terms reflects the effect of one cell assembly, here y, rela-
tively to the others, here x and z. This specific term reflects the distribution
mechanism we used in our computer model to induce a diverging factor that
relies on the output changes of a layer over time.

This system describes a network with nested loops because all layered assemblies
feed each other. The structure of each equation directly reflects the structure of the
network: each term in the sin() function reflects a directional link between two layers.

The general formulation of a new cell assembly added to the system, which would be
represented by a new variable and a new equation, would therefore be the following,
in which theay, Bz, ym and ... terms reflect the structural coupling between layers:

ox/dt = Ex+sin(ay + Bz+ym+...)
Assuming the m term represents an external constraint, m would no more be driven
by an equation homogenous to the ones of cell assemblies in the system. In such a
case, m would be a constant or a linear function of the other variables of the system.

Such a system may receive a numerical resolution using some classical mathematical
toolkit. To exhibit the effects of the different parameters, some resolution were made
in a 3 layers double loop system with fixed values oncthend 3 parameters. The



ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 153-158

comparison of the resulting curves shows that the global dynamic is driven by the
relative influence of the different layers on itself compared to each other, i.e. the
Ei/(a+p+..) ratio. All the types of dynamics, classical in such systems, are observed:
fixed point and limit cycling, quasi-periodic dynamics and chaos.

In the double loop model, these types of dynamic have a particular meaning. Firstly
because of the equivalence between the steady state in the exchange flow with envi-
ronment and the adaptation/learning process. Secondly because of the signal flow
carrier part any double loop plays in the network (see Lecerf [7] for details). Let's
consider a subsystem made of a few layers inside a large network, i.e. a subset of
equations with limited connections to other variables. A subsystem converging on a
fixed point testifies that a regular exchange flow has been established, which means
that the considered subsystem has a structure compatible with this exchange flow. On
the contrary, all other types of dynamic correspond to irregular exchange flows, thus
activating over time outside parts of the network fed by this subsystem because of the
changing inputs (i.ea, B,... factors) in these layers. In the fixed point convergence
case, one can say that the changing input coming from environment is carried out by
the subsystem's existing structure and that there is no need of the other parts of the
network to maintain stability. In the irregular exchange flows case, the changing input
is not carried out by the subsystem's existing structure. Because of the irregular output
flow changing the Eit{+p+..) ratio over time in the layers outside from the subsys-
tem, other parts of the network are activated: architectural plasticity is automatically
obtained by recruiting new resources in the network.

Moreover, when forcing the Ei and+p+..) factors to fixed values, the relative in-
fluence of cell assemblies on each other seems to roughly divide théBEictor

space into two zones (figure 1), therefore confirming that this ratio governs the global
dynamic of the system. In the first zone, converging dynamics are systematically
observed whatever be the initial conditions sets used, although in the second one, only
pseudo-periodic dynamics that do not qualify stability in the double loop model are
observed. This suggests a cooperative effect between these parameters.
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Figure 1: The cooperative effect of the Eiff) factor

5. Conclusion

We have presented the double loop concept, which associates connectionist and dy-
namic features, its computer implementation and a large scaled mathematical model.
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In this model, a layered cell assembly activity is represented by a variable aggregating
value cells and their weights in an "effective value". The coupling between assemblies
are modulated by their relative influence. Different network architectures, even some
involving identified subsystems, might be described through these parameters. This
formal expression of a network by means of a set of equations gives opportunity to
qualitatively describe the behavior of large networks. The learning paradigm, associ-
ated to the model, relies on adaptation to the environment, which is qualitatively de-
fined by a steady state in the exchange flows. In the double loop model, the stabil-
ity/plasticity dilemma finds a solution embodied in the relative effect of each cell
assembly that is represented by changes in theH#Bi#(...) factors over time.
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