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Abstract. We discuss the detection of two Gaussian clusters given a

cloud of points. The optimal learning curve for this unsupervised learn-

ing scenario is determined with a replica calculation. A comparison with

principal component analysis and supervised learning allows to under-

stand the three di�erent learning phases observed.

1. Introduction

The detection of structure underlying a set of randomly distributed points have
been successfully studied in the context of neural networks with the tools of
Statistical Mechanics [1, 2]. In the past few years, replica calculations allowed to
obtain the optimal learning properties on such unsupervised tasks [3, 4]. In this
article, we address the interesting problem in which the points are distributed
in two Gaussian clusters. The optimal learning performance on this problem
presents three consecutive phases as the number of points in the training set
is increased: a �rst one, in which the information gathered from the data is
not enough to detect any structure in the training set, an intermediate phase,
similar to principal component analysis, and a last one where the structure of
the two clusters is detected.

The paper is organized as follows: in section 2, we de�ne our notations.
Section 3 presents the properties of learning the principal component. In section
4, the optimal learning curve for the unsupervised detection of the double-
Gaussian structure is determined. In section 5, we present the optimal learning
performance in the case of a supervised formulation of the same problem. The
discussion of the di�erent learning phases observed is left to section 6.

2. Position of the problem

Let us consider a training set L� = fxkgk=1;���;P of P = �N points identically
and independently distributed in a N -dimensional space. Hereafter, we refer
to � as the (reduced) size of the training set. The detection of the probability
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distribution function (pdf) from which the points in the training set have been
drawn is an example of unsupervised learning. If a class is associated to each
point of the training set, learning is then called supervised. In the following,
we consider the problem where the pdf consists of two Gaussian clusters, and
may be written as:

P � (xjB) � (2�)
�N=2

exp
n
�x � x

2
� V �(�)

o
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where x represents a N -dimensional point and � = x � B =
P

i xiBi is the
coordinate of x in the directionB (B�B = 1). In theN�1 directions orthogonal
to B, the distributions are Gaussians with zero mean and unit variance. In the
direction B, the distribution is the sum of two Gaussians with variance �2 and
mean +� and �� respectively. This de�nes the function V � introduced in (1):
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Such a pdf is the superimposition of two clusters, centered at +�B and ��B
respectively. Thus, the pdf is assumed to be symmetric with respect to the
origin. Generally this is not the case, and learning should be decomposed into
two successive steps: learning of the mean, which is a relatively easy task [5],
followed by the detection of the clusters. We are focusing here on the second
step of learning. We assume that there are only two clusters. This restriction
may be important but we expect that the di�erent learning phases observed
for two clusters also occurs for a larger number of clusters.

Whether the determination of the pdf is possible or not depends on the
assumptions one is willing to accept. In the following, we assume that the
variance �2 and the separation � of the clusters are known. Thus, we restrict
the learning problem to the determination of the direction B or �B (both
directions are equivalent) for a given training set. Once this direction is known,
the two clusters can be easily separated. The fact that the training set has �nite
(reduced) size implies that we cannot determine the direction B but only an
estimator J (normalized to 1). In order to characterize it, we consider the
overlap R = jB � Jj between the true direction and the estimator. This overlap
is zero when J contains no information about the true direction (B and J

are orthogonal) and is one when learning is perfect (J = �B). For a given
training set, the better the estimator the closer is the overlap to one. Di�erent
algorithms, in particular those based on the minimization of appropriate cost
functions, allow to obtain such estimator.

3. Principal component analysis

A particular choice of cost functions consists in:

E (J;L�; �) = �

PX
k=1

(J � xk)2 (3)
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where � = �1. If � = +1, the minimum of (3) occurs for the direction J�

onto which the projections of the training-set points are as small as possible.
More precisely, the variance of the training set is a minimized along this direc-
tion. Conversely, if � = �1, the direction J� of minimal cost is the one with
largest variance. Thus, the minimization of cost function (3) de�nes learning
algorithms for principal component determination [1, 5, 6].

In our problem of two Gaussian clusters, the variances of the pdf in the
directions orthogonal to B are one whereas the variance in the direction B is
�2 = �2 + �2. We expect that the direction J� of minimal cost with � = +1
for � < 1 and � = �1 for � > 1 is a good estimator of the direction B. The
replica approach allows to calculate Rpc(�) = jB � J�j in the thermodynamic
limit (N;P ! +1 with � = P=N constant), which turns out to be [3, 5]:

Rpc(�) =

r
�� �c

�+ 1=(�2 � 1)
(4)

with �c = (�2 � 1)�2. First of all, no learning can succeed with too small
training sets (Rpc = 0 for � � �c), a fact called retarded learning. In the
particular case of unit variance in the direction B (�2 = 1), �c = +1 so
that Rpc = 0 for all values of �: it is impossible to learn the direction B with
principal component analysis. In the case where �2 6= 1 then Rpc ! 1 when
�! +1; perfect learning is possible asymptotically.

4. Optimal cost function

Let us now introduce a general cost function:

E (J;L�; V ) =
PX

k=1

V (J � xk) : (5)

For any potential V , replica calculations allow to determine the learning curve
R(�;V ) corresponding to the minimization of (5), in the thermodynamic limit.
A functional maximization of R(�;V ) allows to determine the optimal potential
Vopt [3, 4]. The determination of Vopt may be done for any �; � and �. The
corresponding learning curve Ropt = R(�;Vopt) is optimal by construction and
satis�es the following equation:

� = R2
opt

(Z +1

�1

Dt

�R
Dz z exp (�V �(�))

�2R
Dz exp (�V �(�))

)�1
(6)

where � = tRopt + z
q
1�R2

opt and Dz = exp(�z2=2)dz=p2�. In order to

obtain the learning curve Ropt(�), we need to invert Eq.(6). If no solution
exists for a given �, then Ropt(�) = 0. If more than one solution exist, the one
with largest R has to be kept.
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5. Supervised scenario

In this section, we suppose that not only the points, but also the clusters
they come from, are given in the training set. This new information is coded
as a binary variable � , such that �k = +1 if the point xk comes from the
cluster centered at +�B and �k = �1 otherwise. The properties of learning the
direction B knowing the training set eL� = fxk; �kgk=1;���;P containing points
xk drawn with the pdf (1) have been studied in [5]. The optimal supervised
overlap Rsup(�) is given by:

Rsup(�) =

(
1� �

�
1� 2�2 +�2�2

��pQ
2 (1� �2) (1� � (1��2))

)1=2

; (7)

Q =
�
1� �

�
1� 2�2 + �2�2

��2
+ 4��2�2:

Since more information is available in the supervised scenario than in the
unsupervised one, Rsup(�) is an upper bound to the unsupervised learning curve.

6. Discussion of the learning phases

In this section, we discuss the three di�erent kinds of optimal unsupervised
learning curves that may arise in the process of detection of the two Gaussian
clusters given a training set of points. Examples of these learning curves are
shown on �gures a, b and c, which correspond to Gaussian clusters with the
same value of � = 0:5 but di�erent separations � = 1:4; 1:2 and 1:1 respectively.
For comparison, we include in the same �gures the curves corresponding to
principal component learning and optimal supervised learning.

In all the cases, the supervised learning curves start increasing at � = 0, in
contrast with unsupervised learning. The retarded learning occurs as soon as
there is a symmetry in the pdf. In this case, the directions �B are equivalent in
the unsupervised scenario. In the supervised scenario this symmetry is absent:
the average of the points yk = �kxk gives information on the direction B,
allowing to obtain a �nite overlap R as soon as � > 0.

In �gures a and b, both the optimal and the principal component learning
curves corresponding to the unsupervised scenario start increasing at the same
value �c. They remain close to each other with increasing � in a range of
� > �c whose width depends on the parameters of the Gaussian clusters. This
phase, dominated by learning of the principal component, is absent in �gure c.

Figure a corresponds to a large variance �2 = 2:21. In this case, the
optimal unsupervised learning curve presents a continuous cross-over between
the principal component learning and the supervised learning.

In �gure b, the optimal unsupervised learning curve jumps from a low-R to
a high-R learning phase at �1 > �c. This discontinuity marks the boundary
between two distinct learning phases. The �rst one is a learning phase simi-
lar to the principal component determination, and the corresponding optimal
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Figure 1: Learning curves. Figures a, b and c correspond to clusters with
� = 0:5, and three di�erent separations: � = 1:4; 1:2 and 1:1, respectively.
In the three �gures, the solid line is the optimal unsupervised learning curve
Ropt(�), the upper (dotted) line is the supervised learning curve Rsup(�) and
the lower (dashed) one is the principal component unsupervised learning curve
Rpc(�).
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potential turns out to be quite close to a quadratic function [4]. The second
one corresponds to a phase where the double-Gaussian structure is detected.
The learning performance of the latter is close to the one predicted for su-
pervised learning. The corresponding optimal potential is a two-well function,
whose minima are located close to ��, the positions of the pdf's maxima in the
direction B.

Figure c corresponds to a distribution whose variance in the direction B is
close to the one in the other directions, as �2 = 1:46. In this case, the learn-
ing phase similar to the principal component one is absent from the optimal
unsupervised learning scenario: Ropt jumps from zero to a value close to the
supervised learning curve at � = �1 < �c, masking the principal component
learning phase. The later needs a critical number of training patterns �c > �1
to develop.

In conclusion, the problem of the unsupervised detection of two Gaussian
clusters given a cloud of points (the training set) has been analyzed within the
Statistical Mechanics framework using replica calculations. We showed that the
optimal unsupervised learning curves may present three di�erent phases as the
training set size � increases. First of all, a non-learning phase arises at small �,
due to the symmetry of the pdf. On increasing �, a phase similar to principal
component learning occurs if the variance in the direction of the two clusters
is di�erent enough from the variances in the other directions. Otherwise, this
phase may not exist. The last phase corresponds to almost perfect learning.
Its performance is close to the one of optimal supervised learning, which needs
more information to be implemented, as the cluster from which the points
have been drawn has to be included in the training set. We expect that these
three di�erent learning phases are characteristic to the detection of clusters
and should also occur for larger numbers of clusters.
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