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Taking inspiration from the Hippocampus
can help solving robotics problems
A.Revel and P.Gaussier and J.P. Banquet

Abstract. In this paper, we present a generic robotic control archi-
tecture inspired from the hippocampus (a brain structure involved in
memory). Moreover, we show how the implantation on a real robot has
helped us to gradually refine the neurobiological model.

1. Introduction

The main goal of our research team is to design neural architectures for the
control of autonomous mobile robots. Although we use a robot born in the
engineer field, we have chosen to take inspiration from neurobiology to design
its control system for 2 main reasons:

e first, it could give us interesting, robust, and ready-made solutions to

design control architecture.
e second, biologists are unfortunately often constrained to study only sub-

parts of the brain due to its complexity. Implementations on robotic sys-
tems can help understanding how a specific neurobiological model behaves
once embedded (understanding the interactions between local models of
the brain).

What is particularly interesting in biological systems is that they are more
opportunistic than classical artificial intelligence systems. Another point is
that a brain inspired machine could help us understanding how “intelligent”
behaviors could result from both artificial and natural control systems.

In this article, we intend to gradually present how the study of a mammal
brain structure called the hippocampus has helped us to conceive efficient con-
trol architectures which can explain how animals could acquire given behaviors
(navigation, planning, imitation...). Besides, we want to show how the imple-
mentation of those models on a real robot has allowed to come back to biology
to propose more accurate neurobiological models.

2. The Hippocampus structure

The hippocampus has been rather well studied by neurobiologists since it seems
to be involved in many phenomenon linked with memory (human) as well as
navigation (rats, human...). The hippocampus is a brain sub-cortical structure
which takes input from the whole associative areas (see fig. 1) via the enthorinal
cortex (EC) and, conversely, projects efferences into associative, pre-frontal,
pre-motor cortical areas... The neuronal hippocampal circuit is as follows [1]:
projections from the EC reach both CA3 and Dentate Gyrus (DG — which itself
is linked with CA3). Then CA3 has efferences towards CAl. Finally, CAl is
linked with the subiculum which throw back links to the EC [1]. Moreover, it
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Figure 1: a) Schematic figure of the brain structures we are interested in. b) Detail of the
sub-structures of the Hippocampus.

must be noticed that CA3 has recurrent connections. A schematic overview of
the structure we are interested in is given in fig. 1.

On a behavioral point of view, it has been shown that hippocampus is in-
volved in human memory processes since its ablation forbid further declarative
learning [12]. Yet, it is still possible to learn conditioning even if the lack of hip-
pocampus make it harder [4]. Besides, it has been shown that the hippocampus
was used in navigational abilities. One of the first evidences has been O’Keefe’s
discover of “place cells” in rats’ hippocampus [10]. The particularity of CAl
pyramidal cells is that they fire mainly when the animal is at a particular place
in its environment (whatever its orientation is). Interestingly enough, “place
cells” continue to fire when the rat is in the dark [14], and that they have a
phasic response as the rat run through a place field [13]. Surprisingly, “place
cells” have only been found recently in primates hippocampus. Mainly, there
are cells in monkeys’ hippocampus which reacts when the animal recognizes a
given “view”: “view cells” whose response depends on the animal orientation

[16].
3. A model of “place cell”

The existence of “place cells” can explain many navigation behaviors: if a
system is capable of locating itself precisely, it could learn “relevant” sensory-
motor association in order to navigate from one place to another. Computa-
tional models taking into account these characteristics of “place cells” have
been proposed. In particular, O’Keefe has suggested that the “place cells” in
the hippocampus are dense enough to consider the hippocampus as a Cartesian
“a cognitive map” [10].

Yet, we have proposed a model which shows that even with a few place cells,
it is possible to construct an architecture explaining some navigation strategies
(homing, goal reaching, dangerous area avoidance — see [5, 21, 19]). This is
possible thanks to two mechanisms: the first one is a generalization mechanism
on the recognition map, which allows to recognize the most similar learned
situation; the second is a competition process on the motor group between
the different possible sensory-motor associations [7] (in fact, it is not really
important to “recognize” the situation, but to perform the appropriate in a
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given situation). This “place cell” model uses the neurobiological evidence
showing that there are 2 paths to compute information extracted by the visual
system [20]. The first path integrates the information linked to the position of
a given object in the visual field (“where” pathway — parietal area), while the
second path “recognizes” the object whatever its position is (“what” pathway
— temporal area). We have proposed to use a neuron group (inspired by the
hippocampus connectivity) to merge the information coming from both the
“what” and “where” pathways in order to build a composite representation.
This representation can be learned in another group of hippocampal neurons
as a signature of the place [9]. A simple conditioning learning can then allow
to link the recognition of the place to a given movement. We have shown that
learning only a few places around a goal location and associating the movement
pointing towards this place allows to reach this place from any position in an
open environment.
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Figure 2: a) The KOALATM robot. b) Example of trajectories of the Koala robot in an
experiment consisting in coming back to a goal position.

Moreover, reducing the vision field in this model, the robot’s hippocampal
cells exhibit “views cells” activity (the neurons were activated more prefer-
entially in a given direction [6]). We suggest that this specific abilities for
monkeys to recognize a view and rats to recognize a place could come from the
position and the field of vision of their eyes. Yet, the internal mechanism could
be exactly the same ! We can wonder why there are so many “place cells” in
the hippocampus since very few cells could allow navigation in an open envi-
ronment 7 More “place cells” may in fact be needed when only odometry is
used or navigating in more complex environment (a maze for instance).

4. Transition cells

In case of a complex environment, the navigation problem becomes a planning
problem: the best route must be found among several possible ones. Ex-
periments performed by Tolman have suggested that rats were able to learn
internal representation of their environment although no reward was given (la-
tent learning — [18]). Several algorithms inspired both by hippocampus and
the “cognitive map” concept have thus been proposed. Schamujk proposes a
model in which the cognitive map learns the relationships between “places” and
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“views”, and a motor module selects the appropriate movement according to
the prediction performed by the cognitive map [17]. During planning, the robot
needs to perform the different possible movements (Vicarious Trial and Error
—[18]), comes back to the place, and then chooses the most appropriate among
them. This is difficult to imagine in a real robot experiment. Scholkopf has
proposed a model inspired by Schmajuk but using only views to build a “view
graph” [11]. The problem is then to learn and exploit at the same time (they
consider the learning is performed by a first neural network and that a classical
planning system is then used to plan !). An interesting attempt of Waxman has
been to develop an architecture implemented on a real robot [2]. In this model,
an internal representation, which merges the “what” and “where” pathways is
built, and the idea is then to learn a representation of topological relationships
between places in order to build a map which can predict “when” an event may
happen. This model was just used to predict but was not yet coupled with a
motivational system which would allow to react on the motor system, and thus,
to plan the actions.
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Figure 3: Fusion mechanism: direct input is merged with the delayed input in
order to build a representation of the transition.

In our model, a “cognitive map” is superimposed on the recognition and
runs in 2 different ways: during exploration of the environment, the system
learns different places and the movement allowing to go from one place to an-
other. Tt also learns the topological relationship between those places (at the
“cognitive map” level) and the places which can be associated with the satisfac-
tion of a motivation. During planning, information learned during exploration
at the “cognitive map” level can be used to bias the competitive recognition
mechanism in order to propose the movement allowing to reach the goal. Yet,
we have shown that an internal representation which is based on the recognition
of a single place cannot allow to plan because of the ambivalence of this repre-
sentation: during exploration, what is only possible is to learn what movement
is possible to reach or to leave this place while during planning what is inter-
esting is to know which movements are allowed from a given place, and, among
them, choosing which is the best one to reach the goal (see [15] for details). We
thus need to learn something linking at the same time the departure position,
the arrival position and the movement to be performed to go from one to the
other. A solution consists in building a representation of the transition between
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two situations. Let AB, the internal representation of the transition between
A and B. The associated action (the movement allowing to go from A to B)
can be learned using, for instance, a probabilistic conditioning rule (see [8] for
details). During planning, a motivation backpropagation mechanism (use of
the “cognitive map” to plan — [15]) activates the neuron indicating the move-
ment that it is necessary to perform in order to reach the goal. The systems
learns to predict the possible transition(s) from the current scene. The idea of
learning to predict transitions comes from a collaboration with a neurobiolo-
gist on modelling the way the hippocampus can learn sequences and timing of
events. A detailed model of the DG and CA3 region of the hippocampus has
been conceived [3]. This model proposes that clusters of granular cells of DG
could act as a delay lines and that links with CA3 could be learned to build a
temporal signature of an event. For the planning system, the DG/CA3 model
has been simplified and works in 2 steps: During learning, when the situation
B and then C (resp. B and D) are encountered, the memory of B is still in
DG and can thus be combined with C' (resp. D) to build a representation of
transition BC' (resp. BD) which can be learned thanks to the known plasticity
of links between DG and CA3 (see fig. 3-a). During planning, the recognized
situation, after the propagation delay within DG, activates the possible tran-
sitions. Then, the planning system allows to select among those possibilities
the one which allows to reach the goal by biasing the recognition of the “good
transition” (see fig. 3).

5. Conclusion

In this paper, we have tempted to present our research framework, empha-
sizing the interest of a mutual help between robotics and biology. We have
shown how computational models have been elaborated thanks to neurobiolog-
ical inspiration. Conversely, we have shown that the difficulty in implementing
some models on a real robot could help understanding the intrinsic mecha-
nism of brain structures. We have principally focused our attention on the
hippocampus since it seems to play an important role in “merging” and “learn-
ing” (generally speaking). Yet, we must pay attention not to jump to quickly
to conclusions on the “real” role of a given structure. Many data on the brain
are still fuzzy or incomplete and we have only paid attention to some of the
functionalities of the hippocampus. In particular, we are not sure of which
hippocampal region is dedicated to the computation of a given part of our
architecture. For instance, the cognitive map model we have proposed could
be learned within the CA3 region (thanks to its recurrent connections). Thus,
our model would suggest that “place cells”, “transition cells” and the cognitive
map would be all computed in the hippocampus. The problem is then to know
how those different functional cells could cohabit (if they really do !). The next
step of our work is thus to come back again to neurobiology in order to verify
the hypotheses we have proposed in the robotic design phase.
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