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Abstract. Independent component analysis (ICA), formulated as a
density estimation problem, is extended to a mixture density model. A
number of ICA blocks, associated to implicit equivalent classes, are up-
dated in turn on the basis of the estimated density they represent. The
approach is equivalent to the EM algorithm and allows an easy non linear
extension of all the current ICA algorithms. We also show a preliminary
test on bi-dimensional synthetic data drawn from a mixture model.

1. Introduction

The ICA technique aims to extract linear projections as statistically indepen-
dent as possible. It has been proved to be a very powerful approach to the
blind source separation problem, some of the most relevant references are [1],
[2], [3], [4]. The separation of linearly mixed independent components, when
their marginal probability density functions are known, can be formulated as
a maximum likelihood estimation problem, or as a search for the linear projec-
tions that match at best the known separable density function, or as the result
of an infomax criterion [2], [3]. Therefore, even when we have no knowledge of
the underlying generative mechanism of our data, we can formulate the inde-
pendent component analysis as a search for the linear projections that match
at best a desired separable density function. The limitations of such a density
search are clearly imposed by the linear structure of the transform, specially in
dealing with natural data for which a generative model may not be known. In
[8] we have generalized the idea of independent component analysis formulating
it as a multidimensional density estimation (Generalized Independent Compo-

nent Analysis, GICA). In this paper we assume a mixture density model for the
data and we use a non linear transformation to achieve the desired separable
density conditionally to the mixture component. The assumption on the data
model is convenient because it allows an easy extension of the standard ICA
approach. A set of linear transformations are adapted on line and selected on
the data according to a maximum a posteriori probability criterion. The idea
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of modeling data as coming from a mixture density has become quite stan-
dard in the literature with the EM algorithm being a very e�cient and simple
method to estimate the free parameters. The extension of the ICA technique to
a multi-class scenario has been recently proposed in [6] and [7], where various
strategies for selecting the cluster within which performing the ICA search, are
suggested. In this paper we focus on the fact that the paradigm can be seen as
a density estimation and the learning algorithm appears equivalent to the EM
algorithm [3] since it estimates the mixture parameters using a maximum likeli-
hood criterion. The key idea of our algorithm is that the posterior probabilities
are estimated using the same implicit density information that the ICA blocks

represent. The multiple ICA structure resembles a competitive network and
we believe it may bear strong resemblance to biological self-organizing neural
networks. Once the neural network weights have been learnt, the sigmoidal
outputs can be easily checked for uniformity and the reversed structure excited
by random data can become a generative model of our observation space. We
show some preliminary simulation results obtained on bi-dimensional synthetic
data drawn from a mixture model.

2. The standard ICA framework

Consider an N -dimensional input random vector x 2 RN and an a�ne trans-
formation

y =Wx+wo; (1)

with the output vector y 2 RM . Suppose that the outputs y are fed into a set
of sigmoidal functions f�i(�); i = 1; :::;Mg obtained from a set of M desired

cumulative distribution functions fFDi(�); i = 1; :::;Mg as

�i(�) = �iFDi(�) + �i; (2)

with �i > 0 8 i = 1; :::;M . Clearly �i < �i(�) < �i + �i and �
0

i(�) � 0 8 �.
De�ne z = (z1; : : : ; zM )T and zi = �i(yi). We search for the projections fyig
that maximize the di�erential entropy h(z) :

h(z) = �DKL(fz;U(�;�+ �)) +

MX
i=1

log�i; (3)

where U(�;�+ �) denotes the separable uniform density
QM

i=1 U(�i; �i + �i)
and DKL(p; q) is the Kullback-Leibler (KL) divergence between the densities p
and q. We note that the search for the projections fyig that maximize h(z) is
equivalent to looking for the projections that make the outputs fzig as uniform
and as independent as possible, all at the same time. If we assume that the
transformation � = (�1; :::; �M )T from y to z is invertible, i.e. we rule out
degenerate density functions, we have that fz(�) = fy(�

�1(�))=jJ(��1(�))j,

where J = diag(@�1
@y1

; :::; @�M
@yM

) is the Jacobian matrix whose determinant is
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jJ j =
QM

i=1 �ifDi(yi). The notation fDi denotes the probability density func-
tion corresponding to FDi. Therefore,

h(z) = Ez[log jJ(�
�1(z))j] �Ez[log fy(�

�1(z))]

=
MX
i=1

log�i +Ey[log
MY
i=1

fDi(yi)]�Ey[log fy(y)]

= �DKL(fy;

MY
i=1

fDi(yi)) +

MX
i=1

log�i: (4)

The search for the parameters (W;wo) that maximizes h(z) is equivalent to

the search for an output y that has a joint density which is as close as possible

to the separable desired density
QM

i=1 fDi(yi) in the KL sense. We take this
criterion as the standard ICA objective. Note how the scale and the location
of the sigmoidal functions is irrelevant since the maximization a�ects only the
�rst term in h(z). Also, if the sigmoidal functions had already been chosen,

maximization of h(z) implicitly searches for the densities ffDi =
_�i
�i
g. The

idea of maximizing the entropy of the outputs of sigmoidal function has been
proposed for the logistic function by Bell and Sejnowsky in [2]. In the following
we will focus on the standard case M = N . To derive the learning algorithm
we should de�ne the score function :

	T = ( 1; : : : ;  M )

=
�
�

��1(y1)
_�1(y1)

; : : : ;�
��M (yM )
_�M (yM )

�
=

�
�

_fD1
(y1)

fD1
(y1)

; : : : ;�
_fDM (yM )

fDM (yM )

�
:

(5)

Typical score-functions, or inuence functions 	i = �
f
0

Di

fDi
are the ones

related to the Gaussian density N (�i; �
2
i ) with 	i(�) =

1
�2
i

(���i), the logistic

density fDi
(�) =

e�(���i)

(1 + e�(���i))2
with 	i(�) = tanh ���i2 , the Laplacian density

fDi
(�) =

1

2i
e
�

j���ij

i with 	i(�) =
1
i
sgn(� � �i).

The free parameters of the problem are then W and wo and since h(y) =
h(x)+ log jWj, we can easily compute the gradients obtaining an ICA gradient
ascent algorithm of the type8<

:
�W = �1(W

�T �	(y)xT )

�wo = ��2	(y):
(6)

3. ICA for mixtures

Assume that the random vector x 2 RN is distributed according to a paramet-
ric mixture density model fx(x;�) =

PC

i=1 �ifx(xji;�i), where C, the number
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of classes, and f�gi=1;:::;C are supposed to be known and � = (�1; : : : ; �C) are
the mixture parameters. We want to learn from examples of x an invertible
nonlinear function z = g(x) that maps x into a random vector z whose com-
ponents are as independent and as uniform as possible. If we knew which class
x belongs to, we can apply the standard ICA paradigm and search, within
each class, for a linear transformation such that z exhibits a separable uniform
density. In the previous section we note that this is equivalent to searching for
a transformation such that the linear projections are as independent and as
close as possible to a set of desired marginals. As depicted in Fig. 1, consider
a one-layer neural network with C blocks performing an a�ne transformation
with parameters (Wi;woi) and a sigmoidal function �i = (�i1; : : : ; �iN )

T ob-
tained from a set of desired cumulative distribution functions (FDi1

; : : : ; FDiN
)

in the following way
�ij(�) = �ijFDij

(�) + �ij ; (7)

with �ij > 0 8i = 1; : : : ; C and 8j = 1; : : : ; N . The vector b = (b1; : : : ; bC)
T

is binary, only one component is high and it is the one correspondent to the
class associated to the input data. So that each unit i is active at a time
and it depends on the input data. This reminds a competitive network of
the type winner-takes-all. We indicate with yi = (yi1; : : : ; yiN )

T and zi =
(zi1; : : : ; ziN )

T , respectively the inputs and the outputs to the sigmoids. Once
the sigmoidal functions have been chosen, the ICA criterion on each block

search for the separable densities fDi
(yi) =

QN

j=1 fDij
(yij) =

QN

j=1

_�ij(yij)
�ij

with i = 1; : : : ; C. The ith class membership function can be derived for self
consistency as

p(ijx) =
�ifyi(Wix+woi) jWijPC

j=1 �jfyj (Wjx+woj) jWj j
: (8)

If the independence had been accomplished one could directly compute

p(ijx) =
�i
QN

j=1

_�ij(yij)
�ij

jWijPC

j=1 �j
QN

l=1

_�jl(yjl)
�jl

jWj j
: (9)

Then the kth class is chosen if the associated posterior probability is maximum,
and bj = �kj 8j = 1; : : : ; C. We have also to de�ne a score function for each

block 	i(yi)
T =

�
�

_fDi1 (yi1)

fDi1 (yi1)
; : : : ;�

_fDiN (yiN )

fDiN (yiN )

�
with i = 1; : : : ; C.

Summary of the stochastic algorithm:

(a) Initialize fWi(0); woi(0)gCi=1 to random values.
(b) Present an input x(n) and forward propagate it (with �xed weights),

computing _�ij(yij(n)) and  ij(yij(n)) 8i = 1; : : : ; C and 8j = 1; : : : ; N .
(c) Compute p(ijx) from (9) 8i and select the winner unit k :
b = (0; ::; 0; 1|{z}

kth

; 0; ::; 0).
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Figure 1: The network structure for ICA for mixtures
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Figure 2: Input examples for a �ve-term logistic mixture and relative outputs

(c) Update only the parameters of the kth unit according to the rule :(
Wk(n+ 1) = Wk(n) + �1(Wk(n)

�T
�	k(yk(n))x(n)

T )

wok(n+ 1) = wok(n)� �2	k(yk(n))
(10)

(d) Go back to step (b).

4. Simulations

We report a set of simulations obtained on a two-dimensional input. The
inputs are 500 examples drawn out of a �ve-term logistic mixture. Figure
2 shows the input examples and the �ve outputs. Note how almost exact
uniform distribution is achieved at the outputs. Figure 3 shows the results of
the generative process, with the reversed structure fed by uniform random data.
The obtained synthetic distribution is shown in (b) and it matches closely the
original input distribution shown in (a).
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Figure 3: Input examples (a) and results of the generative model (b)
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