ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 345-350

Noise to Extract Independent Causes

Darryl Charles and Colin Fyfe
University of Paisley, Scotland

Abstract. Noisy threshold activation functions are used to force sparse
responses on the output neurons of an unsupervised neural network en-
abling the network to identify the underlying independent factors of vi-
sual data. The addition of noise into the network enables us to control
the response of the network to the data so we can force only as many
outputs to respond to the data as there are significant factors in the data.
Noise is also used to modularise the response of the network so that fac-
tors with temporal correlation may be coded in the same module of the
output space.

1. Introduction

The coding of visual data has been a subject of interest recently [3, 1]. One
line of thought in this field of research is that natural images are composed
of a few structural primitives and the distribution on the output neurons of a
neural network trained on such data should be sparse (i.e.the distribution is
highly peaked around zero with heavy tails). Tt is argued [3] that not only are
there links to biological neurons with sparse coding networks which only “fire”
infrequently but that this form of coding is an efficient compromise between an
entirely local coding and a compact (or dense) coding.

The advantage of multiple cause coding [2] in the context of image data
is clear, as most visual objects may be best represented as a combination of
independent features, for example someones head may be thought of as being
made up of eyes, ears, nose etc. A difficulty with problems of this type can be
that the underlying causes in the data are hidden, that is we do not know how
many fundamental causes that there are in the data. We present a solution
to this by controlling the number of factors that we extract in the data with
additive noise on the outputs.

A common benchmark which 1s used to test networks of this kind is the
multiple cause bars data (Figure 1). In this, the artificial image data set is
made up of a random mix of horizontal and vertical bars where bar pixels have
a value "1’ (black) and the white background pixels have a value '0’. Bars
appear at the inputs of the network with an equal, fixed probability (normally
1/8 where an input grid has an area of 8x8). The network should respond so
that separate outputs to the network each identify a single whole bar.

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 345-350

Figure 1: Sample mixture of bars input data

2. The Network

The basic operation of our algorithm is similar to non-linear PCA [4]. The input
data is fed forward via weights from the input neurons to the output neurons
where a linear summation a = W.x is performed, before a non-linearity is
applied to give y = f(a). This activation is then fed back through the same
weights and subtracted from the inputs to calculate a residual error r = x—Wy.
The residual error is then used to perform Hebbian learning between inputs and
outputs so that AW = nry” where 5 is a learning rate parameter. Growth
of the weights in the network is automatically controlled due to the negative
feedback.

A non-linearity that we have previously used within this methodology was
a straightforward rectification of the outputs by setting any negative values on
the outputs to zero, i.e. y = f(a) = [a]T. We have linked these rectification
constraints within this methodology to Factor Analysis [1] and have shown that
this network is capable of identifying all of the bars in the data described above.
A more robust function is y = f(a) = olog(1l + %:;92). This function not
only rectifies negative values but also act as a soft threshold function on the
output values. Each output then only responds strongly to projections from
the inputs through the weights on to y; that are above a certain threshold
value. (# controls the extent of the thresholding and ¢ the gradient).

3. Results

In this section the variety of aspects of our network are illustrated with the
benchmark “bars data”. The networks are trained over 50000 presentations of
the data with a learning rate of 0.05 which is annealed linearly to zero over
the training period. Twenty four outputs are used in each experiment and the
data contains 16 causes. The squares in the following figures are individual
weight vectors into an output neuron arranged 2-dimensionally for convenience
of viewing the results. The diameter of circles within the squares represent
the individual weight values where black is a positive weight and white is a
negative weight.

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 345-350

3.1. Random Mixes of Horizontal and Vertical Bars

We use the more difficult form of this problem in which horizontal and vertical
bars may appear together. Each bar may appear at the input to the network
with a probability of 1/8 as described in Section 1.

The converged weights of our network when using using the straightforward
rectification of the outputs is shown on the left in Figure 2. We have found

R O
=SEESTE =R L
HEEESE -8R
EIEEEE BUNENE

Figure 2: Converged weights in the straightforword rectification network (left)
and the soft threshold network (right)

that the soft threshold non-linearity (right of Figure 2) is more effective than
the plain rectification on the outputs (left of Figure 2). With exactly as many
outputs as bars then both networks identify all of the bars, whereas when there
are more outputs in the network than bars that make up the data set then all
of the bars are identified but in the case of the rectified network some bars are
identified more than once, and junctions of bars or combinations of bars are
also found.

3.2. Additive Noise

Additive noise (zero mean, gaussian noise of standard deviation 0.01 is added
to every output) is beneficial in these networks when added to the outputs
after the application of the non-linearity. Figure 3 show that additive noise
enables the network to identify all of the individual bars. That is, only as
many outputs are used as are required in the coding; the weights connected
to the other outputs all tend to zero. We can also add noise in a graduated
way (minimum variance on first output) across the outputs so that the bars
are learned so that they are grouped at one side of the outputs.

Figure 3: Trained soft threshold network with additive noise - 24 outputs.

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 345-350

3.3. Illusory Causes

In the situation where bar patterns are non-sparse (the bars appear with a ran-
dom probability of 7/8 each) then networks with built in sparse priors cannot
expect to identify the individual bars. Using our threshold network with addi-
tive noise the results (Figure 4) indicate that the network converges to a very
sparse representation - i.e. the illusory bars between the actual bars patterns.
As the network operates so as to find a sparse response and because the indi-
vidual bars are appearing in dense patterns together, then the network cannot
learn the individual bars. Instead the network learns the spaces between bars
patterns which is the appropriate sparse response (illusory bars). Note that in
this experiment that the horizontal and vertical bars are not mixed so as to
allow the weights to learn a more visually interesting response.

Figure 4: The noisy soft threshold network discovers illusory bars - 24 outputs

3.4. Topographical Ordering and Modular Noise.

By introducing temporal context via lateral connections between the outputs,
we can achieve an ordering in the coding of the bars at the outputs. This is
achieved by giving values to the lateral weights proportional to the distance
between any particular pair of outputs and increasing an output’s activation in
proportion to the previous values of the other outputs weighted by the lateral
connections. The lateral connections come into play after the feedforward stage
of the algorithm but before the application of the non-linearity. So a; — a;(t)+

Z;’C:—k,jgéo(ai‘H (t —1)7;), where 7; is a lateral weight. The lateral weights can
be set in a number of ways, for example using a gaussian or difference of
gaussians, or gaussian weighted cosines or sines, however the method that we
use here is simply to connect an output only to its nearest four neighbours.
Lateral weight values to the left of an output are -0.2 and -0.7 (nearest) and
to the right 0.2 and 0.7 (nearest). If the bars appear as part of horizontally
or vertically moving sequences then this network now can order the outputs so
that temporally close features are coded spatially close at the output neurons.
Now using these lateral connections along with modular noise we can force
vertical and horizontal bars to be learned in different modules of the output
space. This is achieved by creating two “wells of attraction” at the outputs
by adding zero mean gaussian noise after the application of the non-linearity
proportional to |cos(2*7*(number of output/total number of outputs| where
each of the outputs are numbered 1,2,3 This has the effect of encouraging

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 345-350

one set of features to be coded around the output that is one third from the left
and one set of features to be coded around the output that is one third from
the right (Figure 5). This happens because the noise is of lower magnitude at
these points and so the error minimisation term of (3) dominates.

Figure 5: Trained weights of soft threshold network with modular noise.

4. Discussion on the use of Noise

Non-linear PCA can be shown to be an approximation to the minimization [4]
of J = E(x — Wy)? = E(x — Wf(a))?, where E() is the expectation operator.
Now we add noise to the process so that y = f(a) + p where y is a vector of
independently drawn noise from a zero mean distribution. So defining f = f(a),

Vo= Hx-Wy) (1)
= B(x— W(f+p))?
= B{xxT —x(f+u)TWT - W(f 4+ p)xT

FW(f + p)(f +) TWT}
= F{xxT —xfTWT - wxT + WiETWT 4+ Wy, "WT}
= J+WAWT (2)

where A 1s a diagonal matrix with positive elements on the diagonal equal
to the variance of the noise. Terms containing single expectations of u can be
removed from the equation as they are drawn from zero mean noise. Intuitively,
we see that, with a low magnitude of added noise to the network the first term
of (2) dominates and so non-linear PCA is performed in the normal manner.
Extracting a weight update rule from the energy equation (2), we have

AW x f(a)(x — Wf(a)) — AWT (3)

If the noise level is increased then the learning is moderated by this additional
weighted noise term which has the effect of forcing some weight vectors to zero
(the degenerate solution). As the amplitude of the noise becomes larger then
the right term has more effect and pushes the weight values downwards.

An alternative view point is to minimise F'(W,x) = (x—Wf(a))? under the
constraint that ¢(W) = WTW. In terms of a Langrange multiplier then we
have L(W,A) = F(W,x) + Ag(W) and using this we can gain further insight

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 345-350

into the use of noise when added on to the outputs. We wish to miminise
F(W,x) subject to g(W) > 0, therefore at the optimal point of this equation
the Kuhn-Tucker conditions must hold so that:

OF dg(W)
6102']' + /\Zj 6wi]' =0 (4)
gW) > 0 (5)
Aij <0 (6)
Aijg(W) = (7)

Now if noise is added to the network then A;; is non-zero and so g(W) must
be zero, that is all of the weights must be zero or the columns of the weight
matrix must be orthogonal. So there are two possible solutions to this equation
that any particular weight vector can adopt: where there is a strong, persistent
feature in the input space (and the noise on the network is not too high) then
the first term of (4) dominates and therefore the fourth condition (7) is held so
that learning is based mostly on the minimization of the error term. If on the
other hand a feature is of small magnitude or appears with a low probabilty
and as a result is overwelmed by noise then the weights are pushed towards
zero because the second regularization term in (4) now dominates.

5. Conclusion

The introduction of noise into the network is very powerful in that a very sparse
response to the data is enforced and may be used to control the extraction of
underlying factors from the data. By adding graduated packets of noise on
the outputs so that there are areas of low amplitude noise in some sections of
the outputs and high in others then the network can be encouraged to learn a
modular response to features in the data.

References

[1] D. Charles and C. Fyfe. Modelling multiple cause structure using rectifi-
cation constraints. Network: Computation in Neural Systems, (9):167-182,
May 1998.

[2] P. Dayan and R. S. Zemel. Competition and multiple cause models. Neural
Computation, 7:565-579, 1995.

[3] D. Field. What is the goal of sensory coding. Newral Computation, 6:555—
601, 1994.

[4] Juha Karhunen and Jyrki Joutsensalo. Representation and separation of
signals using nonlinear pca type learning. Newral Networks, 7(1):113-127,
1994.

