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Abstract. This work investigates the retrieval capacities of di�erent

types of nonmonotonic neurons. Storage capacity is maximized when the

neuron response is a function with well de�ned geometrical characteris-

tics. Numerical experiments demonstrate that storage capacity is directly

related to the dynamical property of the iterative map that describes the

network evolution. Maximum capacity is reached when the neuron dynam-

ics are subdivided into two non-overlapping \erratic bands" around points

xi = �1.

1. Introduction

We consider the storage capacity of fully connected Hop�eld models [2, 1]. The
discrete dynamics of the network elements, X(t) = fxi(t); i = 1; ::; N g, are
assumed to be governed by the N-dimensional iterative map

xi(t + 1) = g
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where �� = (��1 ; �
�
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N); �
�
i = �1; � = 1; 2; :::;M are the con�gurations to

be memorized.
The retrieval process is identi�ed in the convergence of network con�guration

X(t) towards one of the stable �xed points of iterative map (1). A successful
recognition is achieved when the overlap between the �nal static con�guration
and one of the memorized con�gurations, e.g. � = 1, is close to unity, m1 �
1
N

P
i �

1
i xi = 1. In this work, functions g(x) are normalized in such a way that

g(�1) = �1. This normalization ensures that in the ideal case in which the
stored vectors are orthogonal, (��;��) = ��;� , con�gurations �

� are �xed points
of iterative map (1).

In the traditional models, in which the neuron response is a monotone func-
tion, the number of con�gurations that can be stored and retrieved without errors
{ the absolute capacity { is MA � N

2 lnN . If a small fraction of errors is allowed,
{ the relative capacity { is MR � �cN where �c � 0:14 [3, 4]. In the N ! 1
limit, critical values MA and MR separate two distinct phases of the system.
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It was shown that if the sigmoid is replaced with a nonmonotone function
storage capacity is decisively improved [6, 7]. In [7], a theoretical study of two-
stage dynamics with neuron response f(x) = �a x+ c sgn(x), with a = (c+ 1)=2
and a > 0, indicates an absolute capacity of about N=

p
2 lnN and computer

simulations estimate a relative capacity of 0:3N .

2. The model considered

As a �rst example of nonmonotone models, we consider function

ggd(u) = u e�
�

2
(u2�1): (2)

that depends on a single parameter, �. Slope at x = 1 is negative for � > 1.
Figures 1 shows the retrieval performance for a N = 100 network with neuron

response given by (2), as a function of parameter � for several values of loading
parameter � = M=N . Initial con�gurations have a m0 = 0:8 overlap with the
target. Each point, for 1 < � < 5, is generated by averaging over 1000 samples.
Performance is measured in terms of the overlap between the network output and
the pattern to be retrieved. In the following simulations the system �nal output
is binarized, i.e. �nal values xi are set to �1 by means of xi ! xi = sgn(xi). We
indicate with m the overlap obtained using binarized variables xi.

The �nal con�guration has values xi that are contained in two bands around
�1, the width of which depends on � and �. For low � the range of values of
� that maximizes the overlap is wide, as � increases this range shrinks around
value � � 3. Retrieval with few errors is obtained for � < 0:4. Networks of larger
size give the same results, enhancing the di�erence between di�erent phases of
the network behavior.
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Figure 1: The retrieval performance for
a N = 100 network.
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Figure 2: Contour plot of overlap m for
the piecewise linear response for � = 0:4.

Capacity enhancement with respect to monotone functions is a general be-
havior of nonmonotone response functions. Referring to [5, 6, 7], we have experi-
mentally compared function (2) with two other functions: 1) the piecewise linear
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function,

gpl(x) =

8<
:

a x for jxj < � 1+b
a+b

�b x� (1 + b) for 1+b
a+b < �x < 1+b

b

�b d� (1 + b) for 1+b
b

< d < �x
(3)

and 2) the Morita function,

gm(x) = A
1� e�c x

1 + e�c x
� 1 + � ec

0 (jxj�h)

1 + ec
0 (jxj�h)

(4)

where A is a normalization factor such that gm(�1) = �1 and h = 1 1.
The shape of these functions depends on the parameter values. We performed

a numerical study to individuate the parameter values that maximize retrieval
capacity. Better results are achieved when positive (negative) values are mapped
into positive (negative) values. For this reason we set d = (1 + b)=b in the
piecewise linear function, and � = 0 in the Morita function.

Once parameters d and k are set, the other parameters (a and b for the
piecewise linear function and c and c0 for the Morita function) are related with
the positive and negative slopes of the functions. For these two parameters we
searched the values that maximize the overlap between the system con�guration
and the pattern to be retrieved, averaged over a large number of samples (1000).
For � = 0:4, the optimal values are a � 6 and b � 1:4 for the piecewise linear
function, see Fig. 2. The spacing between contour levels is 0:13, the highest
contour level is 0:936 2. In the same way, for the Morita function we found c � 6,
c
0 � 5.
Note that even for � = 0:4 there is a large plateau of parameter values that

maximize storage capacity, i.e. the contour line that includes values within a
small fraction of the maximum delimits a large area. For lower values of load
parameter � this area enlarges while it shrinks for higher values. This behavior
is common to all three functions. The optimal values slightly change with the
loading parameter �. For example, for � = 0:46 we have a � 6 and b � 1:0 for
the piecewise linear response.

A direct comparison between the storage capacities of the three functions |
the Gaussian derivative eq. (2), the Morita function, and the piecewise linear
function | is shown in �gures 3. For all the functions, parameter values that
maximize storage capacity are used. The �gure was obtained for a N = 100
network, starting from initial con�gurations that have a m0 = 0:8 overlap with
the target. Each point is generated by averaging over 1000 samples.

The simulation results indicate that retrieval performance depends on the
geometric shape of the nonmonotone function. In fact, as shown in Fig. 4, the
three functions have very similar shapes and performance when the optimal pa-
rameters are used. For function (2) we choose as optimal value the median of
the intersections betweens the m = 0:9 line and the � = 0:4 curve, i.e. � � 3:2.

1The value of h was set to unity in order to lower the number of parameters while keeping

a reasonable shape.
2The optimal values are de�ned as the approximate position of the maximum; they were

found using a higher number of contour levels than that shown in the �gure.
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Figure 3: Performance for the three
functions with optimal parameters.
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Figure 4: Shape of the three functions
for \optimal" parameter values.

3. Relation with the dynamical properties of the response

function

We consider function (2). Fig. 5 shows the m distribution as a function of param-
eter � for di�erent values of the loading parameter � = M=N . Note that in the
computation ofm, �nal values xi are not binarized to �1 by means of x! sgn(x)
as previously done. The distribution was obtained using 1000 samples for each
value of � and �. The gray level of a pixel (�;m) is proportional to the number
of samples that fall into [� � 1=128; � + 1=128] and [x� 1=128; x+ 1=128]. For
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Figure 5: Distribution of overlap m in
the range 1 < � < 5 for six values of the
load parameter � (initial overlap m0 =
0:8).
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Figure 6: Distribution of x in the range
1 < � < 5 for six values of the load
parameter � (initial overlap m0 = 0:8).

�xed �, there is a sharp transition in performance when � becomes larger than
a threshold value (for � = 0:2 the transition point is at � � 6). The value of this
threshold decreases as � increases.
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The low value of m for \high" � is caused by neuron values xi; i = 1; :::; N;
moving close to zero. This is evidenced by Fig. 6 that displays values xi during
the network evolution for di�erent values of � as a function of �. Each iteration
is generated from a random initial con�guration that has a m0 = 0:8 overlap
with the target. The gray level of a pixel (�; x) is proportional to the number
of times the iterated points xi; i = 1; :::; N; fall into the ranges of values [� �
1=128; �+1=128] and [x�1=128; x+1=128]. In general, the network con�guration
has values xi that are not strictly �1 but are contained within two bands around
�1. The width of these bands depends on � and �.

The comparison between �gures 5 and 6 indicates that, for a �xed memory
load, the system achieves maximum storage capacity when the dynamics form
around points �1 two well-separated bands in which iterated points move errati-
cally, i.e. evenly covering the available space. On the contrary when the iterated
points accumulate around the �xed points, storage capacity is lowered.
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Figure 7: Comparison between retrieval capability, in terms of �nal overlaps m
and m, and the measure of the irregularity of the iteration process (as de�ned
by eq. 10) for � = 0:4. The initial overlap is m0 = 0:8.

This irregular behavior is quantitatively characterized in Fig. 7, where overlap
m and overlap m are plotted against a measure of the spread of the iterated
points, as a function of � (similar results were obtained for other values of �).
To de�ne an appropriate measure, interval [�3; 3] is discretized into W = 106

segments (of length � = 10�6). The measure is de�ned as the ratio between
the total number of values produced, NV P , and the number of segments visited
during the iteration process,

E =

PW

i=0 �i

NV P
2 [0; 1] (5)

where �i = 1 if during iteration one or more values fall inside interval [�3 +
i �; �3 + (i+ 1) �], otherwise �i = 0. The total number of values, NV P , is given

by N
PS

s
Is, where N = 100 is the number of neurons, S = 1000 is the number

of test samples, and Is is the number of iterations corresponding to sample s.
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Measure E tends toward unity if the iterated points spread uniformly in
interval [�3; 3]. On the contrary it decreases toward zero if points accumulate
around particular values. The result is stable under variations of the number of
intervals W (for large W , of order NV P ). Similar results are obtained for other
values of load parameter �.

4. Conclusions

The capacity of associative memories with di�erent types of non-monotonic neu-
rons were numerically investigated to determine the \optimal" shape of the neu-
ron response function. It was shown that starting from di�erent analytical ex-
pressions, such as a piecewise linear function, the Morita function, and a Gaussian
derivative function, capacity is maximized when the functions approximate a well
de�ned shape. The capacity enhancement is connected with the dynamical prop-
erties of the iterative map that describes the discrete network evolution. While
in monotone models neurons are constrained to quasi-binary values close to �1,
in the nonmonotone models they can assume values in a wider range. We have
shown that this property is directly related to the capacity increase. In fact, the
capability of retrieving patterns is maximized when the dynamics of the indi-
vidual neuron are con�ned in two wide but well-disconnected bands around �1.
The optimal shape of the neuron function corresponds to the case in which the
two bands are uniformly covered by the iterated points.
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