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Abstract. Face recognition development has been studied in experimental
psychology, in the first month of life. These studies show that already at the
age of 4 months the right hemisphere processes configural information, while
the left hemisphere processes what is classically called local information. We
have developped a neural model to understand how face recognition learning
develops in early infancy. We propose a bayesian network based on local
cellular properties of visual areas and on lateral-feedforward interactions in
the cortex. The model reproduces the experimental data of the right
hemisphere infant behavior, when tested with faces. We suggest that the
bayesian neural networks and the biological properties of cortical areas may be
a more general and useful instrument to understand human development.

Introduction

Face recognition is a sophisticated ability of humans. The development of this ability
has been studied in the first months of life when the vision is limited. The
experimental results have shown that :
1) the infants can see only low spatial frequencies [1],
2) some kind of face processing starts at birth.
Pascalis et al [2] have demonstrated that 3-day-old neonates recognize their mother's
head but not their mother's face. When presented with the mother's face and a
stranger's face, 3-day-old infants look longer at the mother. But this purely visual
recognition vanishes when the mother and the stranger wears a scarf that masks the
hairline and the line between forehead and hair. This changes such that by the end of
the second month and during the third month of life that infants recognize their
mother's face from their internal configuration even with a scarf.
Experimental results [3] suggest that two different systems for processing faces may
develop at that time. One involves the right hemisphere and processes global
information (as in adults), and the other one involves the left hemisphere and
processes what is classically called local information. More precisely in the first year
of life of the human infant the right hemisphere processes what we have called
configural information and, more importantly, it does not differentiate precisely local
information when embedded in a more complex pattern.
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We have developed a neural model to understand how face recognition and its
learning develop in early infancy, and more precisely the property of the right
hemisphere to process faces.

Hypothesis of the model

The model is a neural network (see Appendix) based on 4 properties of the infant
visual system:
1) the spatial frequencies related to an immature retina: the network is therefore
based on low spatial visual frequencies (from 0.02 to 0.5 c/d, 0.19 being the 3-day-
old preferred frequency),
2) the tuning properties of neurons in area V1: the first processing is based on Gabor
filters, as usually modelled,
3) the activity-dependent learning properties of both feedforward and lateral
connections in cortical areas: the activities and learning rule of the network are
based on a bayesian model of the lateral-feedforward interaction, consistently with
neural and psychophysical data [4],
4) no interhemispheric connections seem to be functional before the age of 2 years;
the model assumes that two perceptual systems, the right and the left, work
differently and independently; we can thus focus on the  specific property of the right
hemisphere.

A natural learning

The learning procedures are designed to be as similar as possible with natural
conditions:
1) stimuli are faces of 3 women each in 6 different orientations: inputs are thus 18
natural faces (black/white photo images), all pre-processed by a low pass filtering, to
simulate the limitation concerning the high spatial frequencies; this first processing
layer of the network decompose faces in Gabor wavelets with low spatial frequencies
only,
2) for the first steps, the neural network learns only one face with 6 orientations,
corresponding to natural conditions points of view. This corresponds to natural
conditions of learning since infants have a bond with their mothers,
3) after, it "familiarizes" with the other two women, but the first one (the mother) is
presented always two times more than the others. The network "overlearns" its
"mother".

The test phase

We consider that the initial state of the network model the infant capacity at birth
and that the final state, when the weights are stabilized, correspond to the infant
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capacity at the age of 4 months. We can thus compare its capacity with the infant
behaviors as measured in psychological experiments.
To test the results of the simulation we have thus built 6 other faces, 2 for each
woman, with 2 different transformations which have been used in psychological
experiments in babies (from the age of 4 to 10 months):
- "eye size" transformation: the eyes size is changed only (scale 1:4) : this
transformation is easy to distinguish by the right hemisphere of 4 months babies,
- "eye shape" transformation: the eyes shape is changed only : this transformation is
not distinguished by the right hemisphere of these infants.
During test phase we present to the network all 24 faces (the 18 previous learned +
the 6 transformed) and we analyze the network ability to differentiate between the
different stimuli.
We test the network at different ages to compare its evolution.
To have a measure of these differences we define the computed distance dIJ after
learning between two faces I and J, for each spatial frequency, as:
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where s=0.01, k(f) is the index corresponding to the 30 positions related to the
spatial frequency f, C(I,J) is the I, J pair, I’ and J’ are the network outputs
corresponding to the inputs I and J.

Results

The network learns the category “ face ” : the distance between the different
orientations of the same person and the distance between the different persons
decrease. This corresponds to cerebral regions which are activated by faces, whatever
the face which is presented. However we expect that this network should behave
differently with the 2 transformations of faces tested at 4 months of age.

Eye Size Transformation
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Fig. 1 – Network evolution for eye size distances
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In Fig. 1 we show the network evolution of the 25 distances (each for each spatial
frequency) between one face I and the same face with the "eyes size" transformation
J : on the horizontal axis, are shown the 25 spatial frequencies of the input layer (see
above), on the vertical axis, are shown the computed distances between I and J for
each frequency. The value of the black bars shows the computed distances in the
initial phase (age = 100 steps), while the white bars shows results when the network
is stabilized (100000 steps, since there is no change from 10000 steps to 100000).
We can easy see that there is an important decrease of the distances for high
frequencies, toward a nul value, while the distances for low frequencies decrease
until a non nul value and then stabilize. This result showes that the network
continues to make a difference between a face and its "eyes size" transformation: this
is in perfect analogy with the infants right hemisphere behavior.

Eye Shape Transformation
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Fig. 2 – Network evolution for eye shape distances

Conversely, in Fig. 2, showing the evolution of the distance between one face I and
the same face with the "eye shape" transformation K, we see an important decrease
of the distances for all frequencies : the network does not discriminate between a face
and its "eye shape" transformation, exactly like the right hemisphere of human
babies.

Conclusion

The network learns to recognize the category “ face ”, and moreover distinguishes
between a face and its "eye size" transformation: it makes, as it is called in
psychology, a configural processing. Conversely, the network does not differentiate
between a face and its "eye shape" transformation, and recognize these faces as the
same: it is unable to process what is called, in psychology, local information.
These results are in full agreement with the experimental data on the right
hemisphere infant behavior. Since the hypothesis are based on the cellular properties
of the visual system, the results suggest that such properties, together with a bayesian
learning process, are sufficient to explain the development of face recognition in
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infants. Such network modeling may be an useful instrument to understand human
development.
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Appendix

The network structure is shown in Fig. 3:
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Fig.3 – The model structure.

The first layer (Image) represents the input face on the retina, a matrix of 112x90
black-white pixels. The second layer (G) represents the Gabor filtering si, an array of
25 spatial frequencies (from 0.02 to 0.5 c/d) x 30 positions.  The third layer (L)
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represents the lateral connected (by the weights rij) neurons xj (25x30). We suggest
that the probability of the population activity is maximized:
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xi is the output of the network, an array of 25x30 neurons, each corresponding to one
spatial frequency and one position.
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