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Abstract. We calculate bounds on the VC dimension and pseudo

dimension for networks of spiking neurons. The connections between

network nodes are parameterized by transmission delays and synaptic

weights. We provide bounds in terms of network depth and number of

connections that are almost linear. For networks with few layers this

yields better bounds than previously established results for networks of

unrestricted depth.

1. Introduction and De�nitions

Due to recent neurobiological �ndings it has become increasingly clear that
computation in natural neural systems is not based solely on average �ring
rates but also on the timing of single spikes. In such networks parameters
are important that are not captured by conventional neuron models such as
threshold or sigmoidal gates. In this paper we study a model for networks
of spiking neurons where the connections between nodes are parameterized by
synaptic transmission delays. Recent theoretical results have shown that the
computational power and learning capabilities for a spiking neuron with ad-
justable delays are signi�cantly higher compared to neuron models that only
have weights as programmable parameters [4, 7]. Moreover, by exhibiting net-
works with quadratic VC dimension the number of training examples that an
algorithm needs for adapting the delays of a network of spiking neurons has
been shown to grow at least quadratically in the number of adjustable delays [5].
(For details concerning the relationship between VC dimension and learnability
we refer the reader to Vidyasagar [8].) This result, however, uses networks of
unrestricted depth. Here, we analyze the VC dimension and pseudo dimension
for networks of spiking neurons in terms of the depth (or number of layers) and
the number of connections of the network. We provide upper bounds that are
almost linear in these parameters. Further, by establishing linear lower bounds
we show that these results are almost optimal.

In a network of spiking neurons each node v receives inputs in the form
of short pulses, or spikes , through its incoming connections from other nodes.
Each connection is parameterized by two numbers: its weight wi 2 IR and its
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delay di 2 IR+ (where IR+ = fx 2 IR : x � 0g). We assume that if v receives
a spike through its i-th connection which has been emitted by some node at
time ti, this generates a rectangular pulse in v described by hdi;wi

(t� ti) with

hdi;wi
(t) =

(
0 for t < di or t � di + 1 ;

wi for di � t < di + 1

where we treat time as a continuous variable denoted by t. The membrane po-
tential of v is a superposition of these pulses de�ned by Pv(t) =

P
i2F hdi;wi

(t�
ti) where F is the set of those connections through which v receives a spike.
Node v emits a spike as soon as Pv reaches a certain threshold �v . More pre-
cisely, the �ring time tv of v satis�es tv = minft : Pv(t) � �vg.

The neuron model that we consider here is a simple version of a leaky
integrate-and-�re neuron and has been introduced by Maass [2]. The functions
hdi;wi

approximate the so-called postsynaptic potentials of biological neurons
and are used for implementations of pulsed neural networks in analog VLSI
such as described by [6]. Further discussions of this type of neuron model can
be found in the surveys by Gerstner [1] and Maass [3].

We consider computations of spiking neurons based on two types of coding.
Binary coding is used to represent Boolean values assuming that a neuron
�res at some �xed time if it encodes a 1, and that it does not �re at all if it
encodes a 0. For analog coding the �ring of a neuron at time tv is assumed
to represent the real value tv . The spikes that arrive at some node v cause a
certain behaviour of Pv that can be represented by a sequence of subsets of
v's weights. At each point in time just one member of this sequence needs to
be considered to determine whether v �res. We refer to this sequence as the
time course of the membrane potential of v. For n connections the sequence is
known to require not more than 2n di�erent subsets as members [4].

The networks of spiking neurons that we study here are feedforward net-
works where the connectivity is de�ned in terms of a directed acyclic graph.
Since we focus on the computation of scalar-valued functions we assume that
there is just one node, the output node, that has no outgoing connection. Nodes
without incoming connections are called input nodes and used to represent in-
put vectors to the network. For encoding values as inputs to and outputs from
the network binary and analog coding may be used independently. The depth
of a network is the length of the longest path leading from an input node to the
output node. In a multi-layer network the nodes are arranged in layers with
connections only between subsequent layers. The �ring time of a network node
v can be described in terms of the �ring time of an input node and the delay
variables of connections lying on the path leading from the input node to v.
We refer to this �ring time as the symbolic output of node v. Further, we say
that this symbolic output is void if v does not �re. The symbolic output of a
network is de�ned to be the symbolic output of its output node.

A dichotomy of a set S = fs(1); : : : ; s(m)g � IRn is a partition of S into
disjoint subsets S0; S1. Given a set F of f0; 1g-valued functions we say that F
shatters S if F induces all dichotomies on S. The Vapnik-Chervonenkis (VC)
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dimension of F is de�ned as the largest number m such that there is a set of
m elements that is shattered by F . For a set F of real-valued functions S is
said to be P-shattered by F if there exist real numbers y(1); : : : ; y(m) such that
every dichotomy of f(s(i); y(i)) : i = 1; : : : ;mg is induced by some function of
the form (s; y) 7! sign(f(s)�y) for some f 2 F . The pseudo dimension of F is
the largest number m such that there is a set of m elements that is P-shattered
by F . The VC dimension (pseudo dimension) of a network of spiking neurons
with binary (analog) coding of the output is is de�ned to be the VC dimension
(pseudo dimension) of the set of functions computed by the network with all
possible assignments of values to its parameters.

2. Upper Bounds

In this section we establish upper bounds on the VC and pseudo dimension for
networks of spiking neurons as de�ned in the previous section in terms of depth
and number of connections. The networks use analog coding of the inputs and
we consider all delays, weights and thresholds as as programmable parameters.

Theorem 1 A network of spiking neurons with C connections and depth D
has VC dimension O(CD log(CD)). This even holds if all delays, weights and
thresholds of the network are adjustable.

Proof. Consider a feedforward network of spiking neurons with one output
node, C connections and depth D. Further, let S be an m-element set of input
vectors s(1); : : : ; s(m). The main idea of the proof is to partition the parameter
domain of the network, that is, the set of all possible assignment of real values
to the network delays, weights and thresholds, into regions such that within
each region all parameter values yield the same sequence of symbolic outputs
of the network on s(1); : : : ; s(m). Determining an upper bound on the number
of such regions in terms of m, C and D we obtain an upper bound on the
number of dichotomies that the network induces on S. Then we use this bound
to calculate an upper bound for m when S is shattered by the network.

We proceed by induction on the levels of network nodes. The level of a
node v is de�ned as the length of the longest path leading from an input node
to v. Thus, input nodes have level 0 and the level of the output node is equal
to the depth of the network.

Let s 2 S and consider the set of nodes of a given level �, say. Assume
further that the parameter domain of all nodes of level at most � � 1 has
already been partitioned into regions such that these nodes do not change
their symbolic output on elements from S when the parameters stay within the
same region. For each of these regions we partition the parameter domain of
the delays of nodes of level at most � into regions such that within each region
the membrane potentials of level � nodes all have the same time course on the
given s. These regions can be bounded by hyperplanes of the form

rv;i + dv;i + a = rv;j + dv;j + b (1)
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where rv;i and rv;j are symbolic outputs of nodes of level at most � � 1 that
node v receives through its i-th and j-th connection with corresponding delay
parameters dv;i and dv;j . Further, a and b are binary values indicating whether
the term refers to the starting or ending point of a postsynaptic pulse. Note
that rv;i; rv;j are components of s if � = 1, and that no hyperplane arises if one
of these symbolic outputs is void. If we denote the total number of incoming
connections to level � nodes by bC� then varying over i; j; a and b there are
at most (2 bC�)2 such hyperplanes that have to be considered for s. Taking all

s 2 S into account we obtain a number of at most m(2 bC�)2 hyperplanes that
partition the domain of delay parameters for level � nodes into regions such
that the time courses of these nodes generated on s(1); : : : ; s(m) do not change
when varying their delay parameters within a region.

For each of the regions obtained so far we now de�ne a partition of the
parameter domain of weights and thresholds for nodes of level �. The regions
of this partition are chosen in such a way that for each of these nodes the
sequence of symbolic outputs on s(1); : : : ; s(m) does not change when varying
its weights and threshold within the same region. This then completes the
induction step.

For a particular s 2 S these regions arise from hyperplanes of the formX
i2Wv

wv;i = �v (2)

where wv;i and �v are weights and threshold of node v andWv is a subset of the
weights occurring in the time course of the membrane potential Pv . We recalled
above that at most 2n such subsets have to be considered for a node with n
inputs and given time course of its membrane potential. Thus at most 2 bC�
such hyperplanes need to be considered for s. Hence, for all s 2 S a number
of at most m2 bC� hyperplanes partition the parameter domain of weights and
thresholds of level � nodes into regions that yield identical sequences of symbolic
outputs on S.

It is well known (see, e.g., [4]) that h hyperplanes partition IRn into at most
2(eh=n)n di�erent regions. (Here, e denotes the base of the natural logarithm.)

Applying this to the regions of delay parameters bounded by at most m(2 bC�)2
hyperplanes of the form (1), and, for each of these regions, to the regions of

weight and threshold parameters bounded by at most m2 bC� hyperplanes of
the form (2) we obtain an upper bound for the number of regions of the joint
parameter domain of delays, weights and thresholds of the nodes of level at
most � by

2(em(2 bC�)2=(2C� +K�))
2C�+K� � 2(em2 bC�=(2C� +K�))

2C�+K� (3)

where K� is the number of nodes of level at most � and C� is the total number
of incoming connections to these nodes. (In 2C�+K� we have an upper bound
for the number of parameters of these nodes, 2 for each connection and 1 for
each node.)
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Inductively, we thus obtain an upper bound for the number of regions for
the parameter domain of all nodes of level at most l by forming the product of
(3) for � = 1; : : : ; l. In particular, for the output node of the network, which
has level D, this yields the upper bound

DY
�=1

2(em(2 bC�)2=(2C� +K�))
2C�+K� � 2(em2 bC�=(2C� +K�))

2C�+K�

for the number of regions of the parameter domain of the network such that
the sequence of symbolic network outputs on S does not change when varying
the parameters within the same region. Using bC� � C�, K� � C� and C� � C
we simplify this bound to

DY
�=1

2(2emC)3C � 2(em)3C = 4D(2e2m2C)3CD :

Assume now that S is shattered by the network. Then we need to have at
least 2m di�erent functions being computed by the network and hence at least
this many di�erent regions of its parameter domain. This implies that

m � 2D + 3CD log(2e2m2C)

from which we derive m = O(CD log(CD)) by a calculation which is omitted
here. This completes the proof of the theorem.

Along the same lines of reasoning we obtain an upper bound on the pseudo
dimension for networks of spiking neurons. The proof is omitted here.

Theorem 2 A network of spiking neurons with C connections and depth D
has pseudo dimension O(CD log(CD)).

Since the depth of a layered network is equal to the number of its layers we
immediately have bounds for multi-layer networks of spiking neurons.

Corollary 3 A multi-layer network of spiking neurons with C connections and
L layers has VC dimension and pseudo dimension O(CL log(CL)).

3. Lower Bounds

We contrast the results in the previous section with lower bounds that are op-
timal except for a logarithmic factor. Moreover, these bounds hold even for
binary inputs and networks where the delays are the only adjustable parame-
ters.

Theorem 4 For each L;C � 1, where C � kL for some constant k, there
exists a multi-layer network of spiking neurons with L layers, C connections
and binary coding of the inputs that has VC dimension 
(CL). This even
holds if the delays are the only programmable parameters of the network and
all weights and thresholds remain �xed.
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Proof. (Sketch) It was shown in [5] that for any m 2 IN a module Mm can be
constructed that extracts and removes the most signi�cant bit from an m-bit
binary number that is given to the module in analog coding. Furthermore, the
depth and the number of connections of Mm do not depend on m. We use
this module to de�ne a network with O(L) layers and O(C) connections that
shatters the set fei : i = 1; : : : ; Cg � fej : j = 1; : : : ; Lg � f0; 1gC+L, where ei
denotes the vector with a 1 in the i-th component and 0s elsewhere.

It was argued in [4] that a function computed by a spiking neuron using
binary coding of the inputs can also be computed by such a network using
analog coding at the expense of adding one extra input node. Thus the above
lower bound passes on to networks of spiking neurons using analog coding of
the inputs. Furthermore, the de�nition of pseudo dimension implies that the
same bound also holds for the pseudo dimension of networks of spiking neurons.

The proof of the lower bound uses a network that has �xed weights and
thresholds and where the only programmable parameters are C delay variables
in the �rst layer. From this we have the following result.

Corollary 5 It is impossible to give an upper bound for the VC dimension of
a multi-layer network of spiking neurons with �xed weights solely in terms of
the number of connections and layers that have programmable delays.
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