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Abstract. We investigate through theoretical analysis and computer
simulations the consequences of unreliable synapses for fast analog com-
putations in networks of spiking neurons, with analog variables encoded
by the �ring activities of pools of spiking neurons. Our results suggest
that the known unreliability of synaptic transmission may be viewed as
a useful tool for analog computing, rather than as a \bug" in neuronal
hardware. We also investigate computations on analog time series en-
coded by the �ring activities of pools of spiking neurons.

1 Introduction

It has been demonstrated in [10] that biological neural systems involving 10
or more synaptic stages are able to carry out complex computations within
100 to 150ms. Since the �ring rates in these neural systems are typically
well below 100Hz and interspike intervals are highly variable [7] this cannot
be be explained by models based on the encoding of analog variables through
�ring rates of spiking neurons. A possible explanation is a model where analog
values are encoded in small temporal di�erences between the �ring times of
presynaptic neurons [10, 6]. However, these models do not provide satisfactory
explanations for fast analog computation in neural systems where synaptic
transmission is unreliable, as appears to be the case in cortical systems of most
vertebrates, with failure probabilities ranging up to 0.9, see [2]. A more common
type of coding encountered in vertebrate cortex is a population coding where
information is encoded by fractions of neurons in various pools that �re within
some short time interval (say, of length between 5 and 10ms) [3]. Although
there exists substantial empirical evidence that many cortical systems encode
relevant analog variables by such space-rate code, it has remained unclear how
networks of spiking neurons can compute in terms of such a code: If all neurons
in a pool V have the same �ring threshold and there are reliable synaptic
connections from all neurons in pool U to all neurons in V with approximately
equal weights, then all neurons v 2 V receive about the same input from U .
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Hence, a �ring of a fraction x of neurons in U will typically trigger almost
none or almost all neurons in V to �re. Several mechanisms have already been
suggested to achieve a smooth graded response in terms of a space-rate code in
V instead of a binary \all or none" �ring, e.g. strongly varying �ring thresholds
or a di�erent number of synaptic connections from U for di�erent neurons
v 2 V [11]. Both option are not completely satisfactory, since �ring thresholds
of biological neurons appear to be rather homogeneous and a regulation of the
response in V through the connectivity pattern seems to make it very di�cult
to implement changes due to some learning process. Furthermore, both options
fail to spread activity over all neurons in V homogeneously, and hence would
make the computation less robust against failures of individual neurons.

In section 2 we investigate the question which functions hx1; : : : ; xni ! y

can be computed by a network of spiking neurons if space-rate code is used to
encode the analog variables xi 2 [0; 1] and y 2 [0; 1].1 The main result is that
the output y encoded in a space-rate code in pool V of our model approximates
a sigmoidal function �(

P
i wixi) for a proper sigmoidal function � and proper

weights wi 2 R. In section 3 we investigate what computations on times series

can be performed by our model. We show there that our model can be described
as a linear �lter with in�nite impulse response (IIR).

2 A Model for Fast Analog Computation

We assume that n pools U1; : : : ; Un consisting of N neurons each are given,
and that all neurons in these pools have synaptic connections to all neurons in
another pool V of N neurons.2 The pools Ui encode the analog input variables
xi 2 [0; 1] in a space rate code whereas pool V encodes the output y of the
network in a space-rate code, i.e. during a short time interval (say of length
5ms) a total of Nxi (Ny) neurons �re in pool Ui (V ) where each neuron
�res only once [3]. In accordance with recent results from neurophysiology we
assume that a spike from a neuron u 2 Ui triggers with a certain probability rvu
(\release probability") the release of some vesicles �lled with neurotransmitter
at one or several release sites of a connection between neurons u 2 Ui and v 2 V .
Data from [9, 2] strongly suggest that in the case of a release the amplitude
of the resulting EPSP in neuron v is a stochastic quantity. Consequently, we
model the amplitude of the EPSP (or IPSP) in the case of a release by a
random variable (r.v.) avu with probability density function �vu. Our model
also allows multiple release sites per synapse, as reported for example in [9].
Figure 1B shows an example of �vu for a synapse with 5 release sites.

Figure 1A illustrates the basic input/output behavior of our model. Shown
are results of computer simulations of our model for n = 6 presynaptic pools
Ui and a poolsize of N = 200 (black dots) and a plot of �(

P
i xiwi) for a

proper sigmoidal function � (solid line).3 We call wi the \e�ective weight"

1Here and in the following the index i always runs from 1 to n.
2Our results remain also valid for connection patterns given by random graphs
3We used the spike response model [4] for our simulations. The parameter of the EPSP
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Figure 1: A Input/output behavior of our model for a poolsize of N = 200 and
hw1; : : : ; w6i = h10;�20;�30; 40; 50; 60i for the \e�ective weights". Each dot is
the result of a simulation of our model with an input hx1; : : : ; x6i selected randomly
from [0; 1]6 such that

P
i wixi covers the range [�20; 80] almost uniformly. The y-axis

shows the fraction y of neurons in V that �re during a 5ms time interval in response
to the �ring of a fraction xi of neurons in pool Ui during a earlier time interval of
length 5ms. The solid line is a plot of the function �(

P
i wixi) as described at the

end of section 2. B Example of a distribution function �vu of EPSP amplitudes as
used for this simulations. This corresponds to a synapse with 5 release sites and a
release probability of 0.4 (units are arbitrary).

from pool Ui to pool V . These simulations show that the output y given
through the percentage of neurons in V that �re during a time interval Iout
of length 5ms approximates quite well the value �(

P
i wixi) for a sigmoidal

\activation function" �. Note that � has not been implemented explicitly in
our computational model. As we will show in the next paragraphs � emerges
implicitly through the large scale statistics of the �ring activity.

We considered an idealized mathematical model (details have to be omitted
from this abstract, but see [8]) where all neurons which �re in the pools Ui �re
synchronously. We also assume that the probability that a neuron v 2 V �res
can be described by the probability that the sum hv of the amplitudes of EPSP's
and IPSP's (these can be viewed as independent r.v.'s) resulting from �ring of
neurons in the pools U1; : : : ; Un exceeds the �ring threshold �. We assume in
this section that the �ring rates of neurons in pool V are relatively low, so that
the impact of their refractory period can be neglected, i.e. we assume that each
neuron v 2 V is at rest.4 Since hv is the sum of a large number of independent
r.v.'s the central limit theorem allows us to approximate the �ring probability
Pfhv � �g of a neuron v 2 V by 1 � �(�; �v; �v) where �(�; �v ; �v) denotes
the normal distribution function with mean �v and variance �2v . According to
our model we have �v =

P
i

P
u2Ui

xirvu�avu and �2v =
P

i

P
u2Ui

xirvuâvu �

x2i r
2
vu�a

2
vu where �avu is the mean PSP amplitude

R
a�vu(a)da and âvu is the

second moment
R
a2�vu(a)da. For sake of brevity we assume in this summary

that �v and �v are the same for all v 2 V (see [8] for the general case),
i.e.

P
u2Ui

rvu�avu =: wi,
P

u2Ui
rvuâvu =: ŵi and

P
u2Ui

r2vu�a
2
vu =: ci for

all neurons v 2 V . In this case we can approximate the expected fraction of
neurons which will �re in pool V by 1 � �(�; ��; ��) (�� =

P
i wixi and �� =P

i ŵixi � cix
2

i ) which grows smoothly with �� like a sigmoidal function.

(IPSP) amplitude distribution function �vu (such as the number of release sites) and the
release probabilities rvu were drawn randomly from distributions reported in the literature.

4Such a model can be viewed as a syn�re chain [1] with unreliable synapses.
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The deviations of the data points in Fig. 1 from the sigmoidal function of
�� can be traced back to two independent sources of noise. One source are just
stochastic 
uctuations due to the �nite poolsize ofN = 200 which is guaranteed
to vanish as N ! 1. Another source of noise is of a more systematic nature:
�� also depends on the inputs xi in such a way that 1��(�; ��; ��) is not purely
a function of ��. It is shown in [8] that this type of noise already dominates
the sampling noise for moderate pool sizes like N = 200. Thus if the system
should have the property that the output y can be approximated by a sigmoidal
function of �� then also �� must be a function of ��. In the asymptotic analysis
for N ! 1 this can be achieved if (a) either rvu or �avu scale such that wi =P

u2Ui
rvu�avu stays constant and (b) if there is a common constant 
 > 0 such

that ŵi = 
wi for all i. Under this conditions the terms ci =
P

u2Ui
r2vu�a

2

vu

vanish if N ! 1 and we get �� = 
��. Hence the term 1 � �(�; ��; 
��) solely
depends on ��. Conditions (a) and (b) indicate that it might be advantageous
for such a neural system to use similar amplitude distributions �vu for di�erent
neurons v 2 V and to encode di�erent weights wi as well as weight changes by
means of the release probabilities rvu (for details see [8]).

A combination of excitatory and inhibitory pools Ui rises some complica-
tions because it is then impossible to satisfy wi = 
ŵi with a common constant

 6= 0 for all i. This indicates that computations which involve positive as
well as negative weights can not be carried out with the same precision as
computations which involve just positive weights. However, simulation results
like the one reported in Fig. 1 show that the qualitative behavior of our model
is not disturbed even under the suboptimal condition of combining excita-
tory and inhibitory pools Ui. For the sigmoidal function in Fig. 1 we used
�(��) = 1��(�; ��;C) with C2 = 0:5

P
i ŵi as sigmoidal function. In [8] more

appropriate sigmoidal functions � are investigated.

3 Analog Computation on Time Series

We now analyze the behavior of our computational model if the �ring probabil-
ities in the pools Ui change with time. Writing xi(t) (y(t)) for the probability
that a neuron in pool Ui (V ) �res during the t-th time window of length, say
2ms, our computational model from section 2 maps a vector of n analog time
series fxi(t)gt2N onto an output time series fy(t)gt2N.

As an example consider a network which consists of one presynaptic pool U1

connected to the output pool V with the same type of synapses as discussed
in section 2. In addition there are feedback connections between individual
neurons v 2 V . The results of simulations reported in Fig. 2 show that this
network computes an interesting map in the time series domain: The space-rate
code in pool V represents a sigmoidal function � (like in section 2) applied to
the output of a bandpass �lter.

We also have analyzed the computational power of such networks of spiking
neurons in the time-series domain (details have to be omitted from this sum-
mary, see [8]) using the spike-response model [4]. We model the e�ect on the
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Figure 2: The gray shaded bars in panel A show the actual measured fraction of
neurons which �re in pool V of the network described at the beginning of section 3
during a time interval of length 2ms in response to a sin wave modulated activity
in pool U1 (not shown). The solid line is a plot of a sin function �tted to the
simulation result. The amplitudes of such �ts for various frequencies are used to
construct empirically the frequency amplitude response (black dots in panel B) of
the �lter implicitly implemented by the network. This is in good agreement with the
theoretical frequency amplitude response (solid line in panel B) given by jH(ej2�f )j
where H(z) is the transfer function6of the �lter in terms of the z-transform.

membrane potential of a neuron v 2 V at time t caused by a �ring of a neuron
u 2 Ui (v 2 V ) at a time k through a \response function" "i(t� k) (�j(t� k),
j 2 f1 : : : ;mg), i.e. "i (�j) models the e�ect of a \feedforward" (\recurrent")
connection. In addition to the e�ective weights wi between the pools Ui and
pool V there are the e�ective weights ~wj of the recurrent connections. The
e�ect on the membrane potential of a neuron v 2 V at time t caused by a �ring
of v itself at time k, i.e. the refractoriness, is modeled through the function
�(t� k).

We consider time series of the form xi(t) = x0 + ~xi(t) and y(t) = y0 + ~y(t)
where the magnitudes of the signals ~xi(t) and ~y(t) are rather small. If we
furthermore assume that xi(t) = x(t) (hence ~xi(t) = ~x(t)) for all i then we
can approximate the output ~y(t) of the network by ~y(t) =

Pt

k=0 bk~x(t � k) �
Pt

k=1 ak~y(t�k) with bk = K
P

i wi"i(k) and ak = �K�(k)�K
Pm

j=1 ~wj�j(k).
7

This is the general form of an in�nite impulse response (IIR) time invariant
linear �lter, see [5]. Note that the coe�cients bk (ak) are determined by the
weights wi ( ~wj) of the feedforward (recurrent) connections and by the time
course of the corresponding response functions "i(k) (�j(k) and �(k)). Thus
di�erent sets of weights wi and ~wj yield di�erent IIR �lters. Furthermore, if
one assumes that the time course of PSPs (modeled by the response functions)
can be changed it is not hard to proof that one can indeed choose arbitrary

numbers bk and ak. Thus one can approximate any given IIR �lter with a
network of spiking neurons using space-rate coding.

6The transfer function of such �lter in terms of the z-transformation is given by H(z) =

(
Pk0

k=0
bkz

�k)=(1 +
Pk0

k=1
akz

�k) .
7Note that there are no rigorous mathematical arguments for such an approximation.

However, our simulation results (Fig. 2) show the high quality of this approximation.
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4 Conclusions

In this article we have established important links between details of realistic
models for biologic neurons and synapses and resulting large scale e�ects of
such details for computations with populations of neurons. We have shown
that the unreliability of synaptic transmission su�ces to explain the possibility
of fast analog computations on the network level. In particular the arguments
of section 2 imply that the computation of arbitrary functions of the form
hx1; : : : ; xni ! y = �(

P
i wixi), with inputs and output in space-rate code,

can be carried out within 10ms by a network of spiking neurons. Hence the
universal approximation theorem for multilayer perceptrons indicates that ar-

bitrary continuous functions f : [0; 1]n ! [0; 1]m can be approximated with a
computation time of not more than 20ms by a network of spiking neurons with
3 layers.

We have also addressed the question which additional computational func-
tions on the network level are possibly if one incorporates other important
features of biological neurons and micro-circuits such as the refractory behav-
ior of neurons and local recurrent connections. We have shown that through
these features a rich repertoire of linear �lters, especially IIR-�lters, can be
implemented on the level of space-rate coding in populations of neurons.
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