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Abstract. The paper proposes a concrete information encoding for

networks of spiking neurons. A temporal code is presented in which

neurons respond to simultaneous spike releases of a particular group of

neurons. The paper puts a spike-based learning rule in the context of

that coding and shows how a network adapts to events experienced while

observing an environment. Furthermore, correlations between events dis-

tant in time can be learnt. To demonstrate this, a net is simulated, the

neurons of which become selective to moving bar stimuli after repeated

presentations of samples.

1. Introduction

Temporal codes are an often examined phenomena in the neuroscience commu-
nity [1, 2, 4, 9] and spike based learning is becoming more popular in neural
modeling [6, 8, 7] and physiological evidence for it has been found [10]. How-
ever combinations of the two in a perceptive system are still relatively rare.
The challenge met by this paper is to propose a concrete temporal coding that
can be learnt by a spike based learning rule when receiving sensory input.

2. Coding by simultaneous spikes

We propose a particular temporal code: a network of neurons codes events, be
they sensory or purely internal, as simultaneous spiking of a group of neurons.
For example the simultaneous stimulation of adjacent optical receptors can en-
code the occurance of a bar. A neuron one step removed from the sensory level
could be sensitive to such a bar event (�gure 1 A). Simultaneous activity of
a group of such orientation selective cells can signal the outline of an object.
Other neurons could, via multi-synaptic connections, code for sequential occu-
rances of events. For example a direction selective cell would need input from
an orientation selective cell as well as from a group of cells that code for a bar
position at some distance (�gure 1 B). Activity in such a network looks like
syn�re chain [1] activity.
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It is essential, that the weight vectors of these neurons are normalized, such
that all the high weight inputs must be simultaneously active to trigger an
action potential (AP), and the neuron must have a relatively short membrane
time constant, so that it reacts as a coincidence detector.

To simplify the observations in the following simulations, the network is
organized into levels is used in the network. Feed-forward connections between
levels are then responsible for the binding of simultaneous activity in the pre-
vious level, whereas intra-level connections bind sequential occurances.

3. Algorithm

We implemented a particular network structure together with a spike based
learning rule, the so called modi�ed Riccati rule (MRR) [7]. Although we
do not (yet) have a strong claim to biological plausibility, we tried to use
physiologically realistic parameters when possible.

3.1. The neuronal model

We use leaky integrate-and-�re neurons with a �ring threshold at 1. We chose
a short membrane leakage time constant of 1.6ms. Therefore our neurons act
like coincidence detectors. This is can be justi�ed for average cortical neurons
if one assumes a constant background activity that acts to increase the neu-
rons' membrane voltage baseline above their reversal potentials. Then the time
constant to bring a neuron back to that level is much reduced. Modeling of in
vivo conditions in general show shorter e�ective time constants than in vitro

experiments would suggest [3, 9].

3.2. The learning rule

The MRR has already been discussed in previous papers [8, 7]. It is a learning
rule local to every synapse. The important property for its use in the context
of our proposed coding scheme is its ability to make a neuron selective to input
from synapses that tend to be active simultaneously, even if they cannot be
distinguished from other synapses when only considering average frequencies
[8]. It also implicitly normalizes a neurons weight vector to a constant length.
Its de�nition is given in the Appendix. The parameters � and � are both 0.01,

which will cause the weight vector length to be normalized to 1 (kwk �
q

�
�
)

[7]. The time constant for the correlation signal's decay � is set to 1.6ms,
since only by having it the same as the membrane leakage time constant is the
normalization accurate [7].

3.3. The network

A two layer network architecture with 9 neurons per layer is used. Four di�erent
bar stimuli are moved in a random sequence past the input layer. Neurons in
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Figure 1: Two types of cells that can emerge in the experiments. The grey levels
of the cells indicate recent activity. The darkest cells are spiking now. The
lighter a cell is, the longer it has not spiked. The activations in the �rst (left)
layer are caused by a passing bar-stimulus. (A) depicts an orientation selective
cell in the second layer, marked with an `O'. The strongest connections are
feed-forward connections from aligned input cells. In (B) a direction selective
cell is shown, marked with a `D'. It receives inputs from aligned cells from the
input layer too, but additionally from an orientation (or direction) selective
cell that was active approximately one transmission delay earlier. This is a
simple example of binding events that appear in sequence. Note that since
the MRR normalizes the length of a neuron's weight vector to one, input from
all major connections is necessary to trigger an action potential, regardless of
their number. So in our particular example for the orientation selective cell in
(A) only two inputs are needed, whereas three simultaneous inputs trigger the
direction selective cell in (B).

that layer react to the passing of the bar by a single spike release. The Bars are
parallel to the diagonals of the square formed by the nine input neurons and
are moved orthogonally to their orientation. The bars are presented during 50
seconds of simulation time in 0.2 second intervals. The speed of the bars was
such that the transit time from one line of neurons to the next matched the
average axonal transmission delay. This maximizes the probability of obtaining
direction selective neurons. If the speed is reduced, the numbers of direction
selective cells will gradually decrease (�gure 2 C). The input layer is fully
connected to the next layer via learning feed-forward connections. In this
next layer all neurons are connected to each other. Connection delays were
randomized in an interval of 10ms�3ms in the �rst experiment and 3ms�3ms
in a second simulation. The second setting is closer to biology (The delay of the
earliest polarization in cortex after thalamic stimulation has been estimated to
be between 1 and 5ms [5].).Initial weights were 0.45. An additional inhibitory
neuron received inputs from all neurons in the second layer (weight = 0.45),
and reduced all the neurons' membrane voltages by a �xed amount of -10 when
active. This prevented the network from self sustained �ring at the beginning
of the experiment, when the learning had not yet normalized the weight vector.
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Figure 2: A&B: The numbers of members of selectivity-classes over 60 simula-
tions. The �rst column shows the number of cells that were non-selective (N)
because they responded to more than two stimuli, the second bar represents the
cells that did not respond to any of the bars (S for silent). The third column
shows the number of cells that were sensitive to orientation only (O; respond-
ing to two parallel stimuli) and the third is the number of direction selective
neurons (D; responding to only one or (being direction sensitive without being
orientation selective) to two orthogonal stimuli). A is the outcome of the sim-
ulation with 10ms base axonal delay. For B that base was 3ms. C depicts the
inuence of the bar transit time between rows of input neurons (x-axis) on the
number of cells belonging to the above described classes (y-axis). The dotted
line represents the non-selective cells, the dash-dotted line the silent ones, the
dashed line the neurons sensitive to orientation and the solid one shows the
numbers of direction selective cells. The sums over 10 experiments are shown.
The axonal delay was 10ms

4. Simulation results

A neuron in the second layer becomes tuned to a stimulation pattern that
results in simultaneous arrival of presynaptic spikes at several of its synapses.
Note that in contrast to time discrete Hebbian learning the term simultaneous
is fuzzy and not biased by borders between time-slots. A neuron's choice of
a stimulus depends on the set of stimuli and on the random o�sets in the
transmission delays from both layers. The preferences of a cell may therefore
change when the preferences of others change, and neurons tend to choose
similar stimuli, e.g. the example of a direction selective cell in �gure 1 B is
dependent on the existence of a cell that is selective to the same orientation.
Still the coupling was not so strong as to always prevent the emergence of
di�erent orientation preferences in one run. In a bigger network with more
local instead of full intra-layer connections several preference regions might
develop, such as are observed in visual cortex for example.

With the shorter axonal base delay (3ms) signals from subsequent bar posi-
tions could arrive simultaneously in the second layer. Therefore, as opposed to
the example in �gure 1 B, cells can become direction selective without another
cell being orientation selective. Also the spike density is increased, which a�ects
the coincidence detection property of the neurons and self sustained activity
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was more probable. More cells remain non-selective (compare �gure 2 A/B).
Mismatch between bar travel time and axonal base delay do not immediately

destroy the network's ability to produce direction selective cells (�gure 2 C,
solid line). Even when the bar speed is reduced such that a direct input to
the second layer must be faster than a two synaptic one from the previous bar
position, one can still not rule out the possibility of a coincidence of a triple
synaptic input from that formar bar position with a direct one, though the
probability is very low. The number of orientation selective cells is independent
of the bar speed (�gure 2 C, dashed line). The number of silent cells (�gure 2
C, dash-dotted line) increases with decreasing bar speed up to a point where
only they and the orientation selective cells remain, whereas the number of
non-selective cells declines to zero.

5. Conclusion

A coding scheme has been put forward that is based on events of synchronous
group activity. Spike based learning rules that reward causal relationships be-
tween pre- and postsynaptic spikes will tune a neuron to groups of synapses that
receive coincident spikes and can therefore adapt a neuron to read this coding.
Combining the learning and the coding scheme in a network can for example
tune cells to the orientation and direction of moving bars. In more general
terms such a network can bind features together that have appeared together
in the systems experience. It can establish temporal relationships between fea-
tures that tend to appear in sequence. This binding can appear recursively and
so lead to representations of objects of increasing level of abstraction.

Appendix: The MRR

The following rule de�nes what happens at one synapse.

c(tm;0) =

(
e�

tm;0�tm�1;s

� c(tm�1;s) if s > 0

0 if s = 0

c(tm;1) = 1

c(tm;n) = e�
tm;n�tm;n�1

� c(tm;n�1) + 1

if

n > 1

tm;n � tm+1;0

s = maxfv : tm�1;v � tm;0g

(1)

w(tm;0) = w(tm�1;0) + �c(tm;0)� �w(tm�1;0) (2)
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where c is the `correlation signal', `remembering' recent presynaptic activity for
a time determined by � . w is the weight at this synapse, tm;0 is the time of the
m'th postsynaptic spike and tm;n (n > 0) is the time of the n'th presynaptic
spike after the m'th postsynaptic spike. s is the number of presynaptic spikes
between the (m � 1)'th and the m'th postsynaptic spike, so tm�1;s is the last
event (presynaptic or postsynaptic spike) before the m'th postsynaptic spike;
� and � are parameters inuencing the learning speed and the weight vector

normalization (kwk �
q

�
�
).
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