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Abstract. We study the coding accuracy of a population of stochas-

tically spiking neurons that respond to di�erent features of a stimulus.

By using Fisher information as a measure of the encoding error, it can

be shown that narrow tuning functions in one of the encoded dimensions

increase the coding accuracy for this dimension as long as the active

sub-population is large enough. This can be achieved by neurons that

are broadly tuned in the other dimensions. If one or more stimulus fea-

tures encoded by the neural population are unknown, the relative widths

of the tuning curves in the remaining dimensions are a measure of the

corresponding relative accuracies. This feature allows a quantitative de-

scription of the kind of information conveyed by the neural population.

1. Introduction

Most neurons in biological systems respond to many di�erent stimulus fea-
tures. A so-called visual neuron, for example, may respond to the location,
shape, movement pattern, color, and contrast of an object in the visual �eld.
This coding is not uniform in several respects. First, the tuning width of a
single neuron is generally not the same for all dimensions representing the
stimulus features. Second, neurons in a population di�er with respect to the
location and the width of their tuning curves. On the other hand, a general
feature of biological systems is the existence of physiological classes of neurons
with similar tuning properties (e. g., [1, 2]). It is assumed that the classes pro-
cess di�erent aspects of the incoming stimuli, which leads to the concept of
`pathways' of information 
ow [3, 2].

However, the question of how to derive statements on the functional signi�-
cance of a class of neurons from its tuning characteristics is still controversially
discussed. A classical approach to this question is that of detector cells [4].
The idea that amphibia make use of `bug detector' cells in the retina or in the
optic tectum, for example, has dominated early studies of the neurobiology of
these animals [5]. A characteristic feature of such detectors is their extremely
narrow tuning. In recent years, theoretical arguments against the detector con-
cept have been put forward. It was argued that a population of neurons with
large receptive �elds allows a greater resolution [6]. Thus, there are di�erent
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views on the optimal neuronal tuning width. A thorough understanding of this
point is crucial for the identi�cation of the function of neuronal pathways on
the basis of tuning widths. It is obvious that progress in this �eld could provide
fundamental concepts for understanding functional aspects and coding in neu-
ral systems. Recent progress in this �eld has been achieved by calculating the
Fisher information [8] of the neural activity pattern, which serves as a lower
bound of the error for estimating the stimulus parameters from the activity [7].

Here we calculate the Fisher information of a population of spiking neu-
rons encoding multiple stimulus features. The consideration of di�erent tuning
widths in the di�erent dimensions enables a detailed study of the estimation
errors obtained as a function of the population's tuning properties and may
solve the question of optimal tuning widths. We also study the empirically
encountered situation of `hidden stimulus dimensions'. The analysis yields a
quantitative account on the kind of information conveyed by the neural popu-
lation.

2. Theoretical Framework

Consider a D-dimensional stimulus vector, x = (x1; : : : ; xD), which is to be
encoded by a population of N spiking neurons. All feature values are measured
in a �xed system of units, so that the xi are dimensionless numbers. The mean
�ring rate of neuron k (k = 1; : : : ; N ) is determined by its tuning function,
f (k), which is assumed to be of the form

f (k)(x) = F�

 
DX
i=1

(xi � c
(k)
i )2

�2i

!
; (1)

where maxz �(z) = 1, F is the maximum �ring rate, and c
(k) is the center of

the tuning curve. Note that f (k)(x) is not radially symmetric because there
is a separate tuning width �i for each stimulus dimension. A good approxi-
mation for many measured tuning functions is a Gaussian, �(z) = exp(�z=2).
The tuning functions of the population are distributed in the D-dimensional
stimulus space according to some density function, �(x); here, we shall restrict
ourselves to a uniform distribution, � � const.

The neurons are assumed to spike stochastically, i. e., measuring �ring rates
within a �nite observation time interval � does not always yield �f (k)(x) spikes.
Instead, one gets an x-dependent probability distribution P (n;x) for the spike
count vector n = (n1; : : : ; nN ). Here we assume that the neurons �re their
action potentials independently, so that P (n;x) =

Q
k P

(k)(n(k);x). Note that
the input of individual neurons may be correlated (i. e., the tuning curves may
overlap), and that only the spike generation mechanisms must be independent.
Moreover, the spike count probabilities are assumed to depend only on the
local value of the tuning function and on the counting time, P (k)(n(k);x) =
S
�
n(k); f (k)(x); �

�
. An example for a spike generation process that satis�es

this assumption is a Poisson process, where S(n; z; � ) = (�z)n exp(��z)=n!.
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In order to assess the accuracy of the representation of the stimulus param-
eter xi, we calculate the Fisher information matrix [8]. For a uniform distri-
bution of tuning functions, all o�-diagonal elements vanish, while the diagonal
elements are given by

Ji(x) := E

"�
@

@xi
lnP (n;x)

�2#
(2)

[7]. Here, E[: : :] denotes the expectation value over P (n;x). The relevance of
Fisher information for the coding quality is demonstrated by the Cram�er-Rao
inequality, which states that 1=Ji(x) is a lower bound for the mean square error
�2i that is made when estimating xi from the neural activity n,

�2i � Ji(x)
�1: (3)

This statement is independent of the method of estimation | it applies to
all unbiased estimators of the parameter xi. Thus, a high degree of Fisher
information allows a good estimate of xi, while low Fisher information implies
poor coding accuracy.

3. Information Content of Neural Responses

Since the neurons spike independently, the population Fisher information in the
i-th dimension, Ji(x), can be written in terms of single-neuron contributions

denoted by J
(k)
i (x) for neuron k. These are also given by (2), the only di�er-

ence being that P (n;x) must be replaced by P (k)(n(k);x). For the neuronal
ensemble described above, one �nds that

J
(k)
i (x) =

1

�2i
A�

�
�(k)2; F; �

�
�
(k)2
i ; (4)

where �
(k)
i := (xi�c

(k)
i )=�i and �(k)2 :=

P
j �

(k)2
j measure the rescaled distance

of x from the tuning curve center, and A� abbreviates the function

A�(z; F; � ) := 4F 2
1X
n=0

S[n; F�(z); � ]T [n; F�(z); � ]2�0(z)2; (5)

with T (n; z; � ) := @
@z

lnS(n; z; � ).
The Fisher information Ji(x) for the whole population is given by the sum

of all single-neuron contributions (4). If the centers of the tuning curves are
uniformly distributed in stimulus space with density �, it becomes independent
of x, and one obtains

Ji(x) � Ji =
�
�QD

j=1 �j

�
�2i

K�(F; �;D)D; (6)
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where K� denotes the integral (�2 :=
P

j �
2
j )

K�(F; �;D) :=
1

D

Z
1

�1

d�1 : : :

Z
1

�1

d�D A�(�
2; F; � )�21: (7)

Equations (3) and (6) yield an estimate of the single-dimension encoding accu-
racy obtained by the population of neurons. It is valid for the general class of
probability distributions P (k)(n(k);x) described above.

The Fisher information content Ji, and thus the coding accuracy, depend on
D + 1 main parameters of the neural population: The tuning function density
� and the set of tuning widths �i. Equation (6) shows that increasing �, which
corresponds to increasing the number of neurons N , always improves the code.
The dependence on the �i is more complex and will be discussed in the next
section.

4. Tuning Width and Coding Accuracy

In the special case that tuning widths are equal, i. e. �i = �, one recovers from
(6) the result of Zhang and Sejnowski [7], Ji / �D�2, which states that small
tuning widths are favorable for D = 1, while accuracy is independent of � for
D = 2, and broad tuning improves the code for D � 2.

This situation changes dramatically if we consider the more realistic case
of di�erent tuning widths for the individual stimulus dimensions, i. Suppose,
for example, that only �i is varied, while �j for i 6= j remain �xed. In this
situation, one �nds that Ji / ��1i and Jj / �i. This implies that decreasing
�i always improves the encoding of xi and deteriorates the encoding of xj for
i 6= j, no matter how large the overall number of encoded dimensions is. On
the other hand, a broad tuning in dimension i can improve the coding of all
dimensions j 6= i.

This behavior can be understood as follows. The mean error for estimating
xi from the activity of an individual neuron with su�ciently high �ring rate will
be in the range of the tuning width �i, so that this e�ect leads to an increase of

the neuron's Fisher information J
(k)
i (x) / ��2i . On the other hand, the tuning

width determines how many neurons belong to the population that is actually
activated by the stimulus. Roughly speaking, for all dimensionsm, large values

of J
(k)
m (x) are localized in a region around the center of the tuning curve (i. e., if

�(k)2 < 1). Therefore, only Ncode � �
Q

j �j neurons convey the major part of
the population's Fisher information on the stimulus, and the active population
size will vary / �i.

Since the population's Fisher information is the sum of the single-neuron
contributions over the activated population, these two e�ects counteract and
determine the behavior of Ji and Jj (where j 6= i). Obviously, Jj is only
in
uenced by the latter e�ect, so that Jj / �i. In the case of Ji, the variation
of the individual neurons' information outweighs that of the number of encoding
neurons Ncode and one gets Ji / ��1i .
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Given a �xed density of tuning curves, �, the optimal strategy for accurate
encoding of a single dimension i therefore consists of a small tuning width �i
for this dimension and of large tuning widths in all other encoded dimensions.
The narrow tuning in dimension i provides each active neuron with maximal
information on the stimulus, while the broad tuning in the other dimensions en-
sures that the sub-population that is activated by the stimulus is large enough.
However, it must be remembered that the validity of (6), and thus of all results
presented so far, critically depends on the assumption that the tuning curves
are evenly distributed. This assumption becomes inevitably violated if the tun-
ing is so narrow (or the tuning curve density � is so small) that `gaps' appear
between the tuning functions of individual neurons. Such gaps can be shown to
lead to a divergence of the spatially averaged mean square error. Thus, there
is a limit to improving the encoding quality by decreasing the tuning width.

In most experimental situations, the total number of encoded dimensions
D will be unknown. Consider, for example, a neuron that responds to visual
stimuli, where it is impossible to specify allD dimensions of the stimulus (color,
shape, velocity, location, etc.) or even to estimate D at all. This situation is
generally dealt with by probing the response only with respect to d < D known
dimensions and to ignore the unknown dimensions d + 1; : : : ; D. In this case,
the Fisher information (6) can be written as

Ji =
1

�2i

 
dY

k=1

�k

!
X; X := �

 
DY

k=d+1

�k

!
K�(F; �;D)D : (8)

The fact that X is unknown prohibits estimating the absolute quality of the
representation via the Cram�er-Rao inequality (3). However, X can be elimi-
nated by taking the quotient of the Ji. Denoting the mean square error of an
optimal estimator with �2i;min := 1=Ji, this yields

�2i;minPd

j=1 �
2
j;min

=
�2iPd

j=1 �
2
j

: (9)

Thus, the tuning widths of the known dimensions are a measure of relative cod-
ing quality. Equation (9) can be used to interpret tuning properties measured
in recording experiments. Given the tuning widths of a neural population, it
yields a quantitative measure of how accurate the neurons encode each stimu-
lus dimension. This may be used to derive a hypothesis on the function of the
population within the neural network. If, for example, (9) yields that a class of
neurons encodes stimulus location very accurately, while shape is represented
with a considerably larger minimal error, it may be concluded that the class
plays a role in the localization of the stimulus rather than in its recognition.

5. Conclusion

Our analysis of Fisher information contained in the response of a neural popu-
lation sensitive for D-dimensional stimuli yields an estimate of the encoding ac-
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curacy obtained for the di�erent stimulus features. Speci�cally, accuracy in one
dimension can be increased by narrowing the receptive �eld in the respective
dimension while broadening the receptive �elds in the remaining dimensions.
Relative accuracies are obtained if only part of the dimensions are accessible.

The question which encoding strategy a given neural population adopts re-
mains to be answered empirically. Speci�cally, it may be possible to identify
pathways of information 
ow in the nervous system [3, 2] by means of a quan-
titative analysis of the features encoded by a given neural population and the
populations with which it interacts. An interesting question is whether part
of the information contained in a population can be extracted thereby locally
increasing the amount of information in the system. Such a feature would,
for example, be advantageous for the purpose of object localization and motor
control [9], whereby other stimulus features may be neglected.

We thank K. Pawelzik and M. Bethge for helpful discussions. This work was
supported by Deutsche Forschungsgemeinschaft, SFB 517.
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