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Abstract : This paper describes the importance of the RBF model
quality in a model-based predictive control scheme. We show that a
good neuronal approximator does not necessarily correctly model the
intrinsic behaviour of the identified system. We have used a simulated
example to show the harmful effects of a particular type of incorrect
behaviour,  the non-invertibility of the model relative to the control
input. Lastly, we propose a derived RBF model that is slightly more
complex, but which is systematically invertible.

1. Introduction

Due to their multidimensional approximation capability and their simple
and fast learning, Radial Basis Function networks (RBF networks) have
been used extensively for the identification and control of non-linear
dynamic systems. They have been used in several strategies like classical
non linear control scheme or model-based predictive control (MBPC)
[1,2]. For this last, the neural net based model accuracy in term of
prediction error is not sufficient to obtain acceptable performance. The
objective of identification is here to define a good emulator [3] of the
system to be controlled rather than a good approximator. Qualitative
precision is more important than quantitative accuracy. The first part of
this paper shows that the universal approximator property of RBF
networks does not necessarily imply a correct system behaviour capture.
We are specifically interested in model invertibility, whose definition and
the way it is described are summarized. We have used a simulated system
to study the effects of a non-invertible model on the performances of a
generalised predictive control scheme. Lastly, we describe a model which
overcomes this particular problem.

2. The RBF net and its universal approximator property

Several studies have shown that RBF networks are universal approximator
[4]. Assuming we need to identify a SISO system with input u(k) and
output y(k) and with dynamic f(.) : K → R , K ⊂ Rr.
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The set of RBF model parametrized  by θ is of the form :
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where X(k) = [y(k),...,y(k-ny),u(k),...,u(k-nu)]
T ∈ Yny × Unu ⊆ K. The input

and output orders nu and ny are assumed to be known a priori. The vector θ
includes the number of hidden neurons Nh, the centres Ci, the weights wi
and the unique width σ. Under mild assumptions on the activation
function ϕ(.), it has been proved that for a given arbitrary accuracy ε, there
is always a set of parameters θ* such that [4] :

( ) ( )f X NN X X Y Uny nu− < ∀ ∈ ×θ ε* (2)

This result guaranties a finite bounded prediction error over the
approximation domain, but it does not imply an agreement, even a biased
one, between the dynamics of the system and the model. In fact, the
relationship (2) means that NNθ*(X) is necessarily between two
hypersurfaces, centered on f(X) and distant from 2ε when X moves on
Yny×Unu. We can try to reduce this by limiting ε, or by using a regression
technique [5], but without completely cancelling it. The behaviour of the
model in this region is therefore free and globally uncontrollable. Let us
note that the non-linear statistical tests proposed in [6] do not always
detect these undesired model behaviours.

3. Definition and measurement of invertibility

This section deals with influence of a non-invertible model used in a
neural net-based GPC scheme. For this, we shall rewrite X(k) as
X(k) = [u(k),ψ(k)], where u(k) is the actual control input and
ψ(k) ∈ Yny × Unu-1 is the system history i.e. the set of variables not
controllable at time k. The equation (2) becomes :

[ ]�( ) ( ), ( )y k NN u k k+ =1 ψ (3)

We also define :

[ ]�( ) , ( )y u k NN u k0 0= ψ (4)

as the model output at time k0+1 for an arbitrary command u∈U and a
fixed history ψ(k0). The notion of invertibility relatively to the control
input was proposed in [7]. A neural model is locally invertible if the
output (4) is different for two any distinct inputs u1 and u2 taken in U. This
definition implies that a model is invertible if, and only if, ∀k0 ≥ 0 and
∀ ψ(k0) ∈ Yny × Unu-1, the output �( )y u k0 is monotonic with respect to

u ∈ U. We will evaluate this property at time k0  by looking for the input
interval Uinv(k0) = [um(k0) ; uM(k0)] ⊆ U such that :
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where SGN(.) is the sign function and takes value ±1. If an invertible
system is correctly emulated by the model, we must have Uinv(k0) = U ∀ k0.
The invertibility interval sought is centered on U, but in the general case
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there can be several zones of invertibility located anywhere on U. The
derivative vanishes at points um(k0) and uM(k0), so that the direction of
change in the output model toggles. We will see later that Uinv(k0) can then
represent a zone of inverse behaviour, where the output model moves in
the opposite direction from the real output.

4. Simulation study

We have simulated a SISO system defined by [7]:
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This non-linear system was identified with a Gaussian RBF network given
by (1) with activation functions :
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The network is learned by a hybrid technique [8]. We have selected an
erroneous model structure by taking ny=1 et nu=2 to ensure a clear
demonstration. The resulting prediction errors are relatively large but
remain bounded on Y × U2. The over-parameterization produces a very
poor emulation of the system. We have chosen a generalised predictive
control (GPC) [9], whose minimizing cost function is given by :
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where yref(k+j) is the reference trajectory to reach. The future estimated
outputs �( )y k j+  are usually obtained by Np iterations of the model (1).

A test was done with the GPC parameters set at λ = 0.0, N1 = Np = Nu = 1.
This allowed us to ignore the model accuracy when it worked in
simulation, since only the estimated output at time k+1 was required. Part
of the results are shown in figure 1. The upper part shows the reference
trajectory, the system response and the predicted output. The lower part
shows the control input u(k) and its invertibility limits um(k) and uM(k).
The overall result was satisfactory, despite the relative inaccuracy of the
model used. Since u(k) was only calculated from the output model, it
almost perfectly follows the trajectory, even though the true output was
biased. A more interesting phenomenon occurred between times k = 80
and k = 99, when the GPC seemed to become unstable. Figure 2 shows the
situation which the numerical algorithm encounters at time k0 = 84 to
select the optimal control law. The upper part shows yref(k0+1) and the
model output according to u. The lower part shows the corresponding
change in J(k0,u). The dotted curves show the same variables calculated
from the simulated system. The selected command corresponds to a local
minimum (induced by the non-monotony of the model) that is in a zone of
inverse behaviour.
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Figure 1. GPC with a non-invertible RBF net model
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Figure 2 : Command calculus at time k=84
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Thus, u(k0) had the effect of bringing the model output �( )y k0 1+  closer to

the reference whereas it moved away the real output from there. If this
continues, the command is likely to diverge definitively since there is no
real tracking error feedback in the GPC loop. But here, the calculated
control input at time k0+1 (not shown) represents the global minimum and
is outside Uinv(k0+1) (cf figure 1). The model then evolved in the same
direction as the system, producing a correct control. Thus, the observed
oscillations resulted from a succession of these two situations. This is a
simple case, since there was only one zone of inverse behaviour in the
vicinity of u = 0.0 and u(k) was only calculated, without penalty, from the
following prediction. The general case (Np>1, λ>0.0) is more complex to
study. The second part of (8) can be made dominant by increasing λ,
which reduces the problem. However, this solution is artificial and can be
dangerous because this parameter strongly influences the GPC stability[9].

5. A systematically invertible indirect RBF model

It is mathematically difficult to introduce a monotony constraint into the
RBF training to obtain a systematically invertible model and modifying
the optimal control calculation to avoid the local minima can require a lot
of computation. The specialised training described in [3] could be an
interesting solution, but requires working with a state space model. It also
does not guarantee that there will be no inverse behaviour zones. The
solution we propose is to use a derived RBF model inspired by [10] and
defined by:
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where Ok = [y(k-1)...y(k-n),u(k-d)...u(k-m)]T. The coefficients ai(.) et bj(.)
are RBF outputs computed according to :
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After some manipulation of the regressor Ok, it is possible to carry out the
network learning by a standard least mean squares technique. In the same
way, the adaptation can be simply performed on-line by recursive least
squares. Choosing d > 1 immediately shows that the output
�( )y u k0 calculated for (9) is the output of a purely linear ARX model,

which is therefore always invertible relative to the most recent control
input. The two hidden layers of the structure mean that fewer hidden
neurons are generally needed to reach the precision of a direct RBF model.

6. Conclusion

We have highlighted the importance of the qualitative aspect of an RBF
model, in particular its invertibility, in a MBPC type of control strategy. In
a MPBC scheme, the control law is calculated assuming the "certainty
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equivalence" principle between the system and the model. That means that
the model change in response to a control sequence is similar to the real
process one. When the RBF model checks this assumption and the
controller parameters are selected appropriately (i.e. produce a stable
closed loop), the universal approximator property ensures a bounded
tracking error. But this equivalence is no longer respected when the model
is not invertible. Local minima then appear, which can be appropriately
treated during computation of the optimal control, but with a waste of time
that is undesirable in real-time applications. Another more serious
consequence is the possible appearance of zones of opposite behaviour.
These areas can produce aberrant control inputs which can destabilise the
closed-loop system. We have developed a systematically invertible model
to overcome this type of problem. While it seems more complex, it has the
same speed of training as a direct RBF model, with a computational load
that is only slightly greater.
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