
The NeuralBAG algorithm:
Optimizing generalization performance in

bagged neural networks

John G. Carney and P�adraig Cunningham
Department of Computer Science

University of Dublin
Trinity College

Ireland
John.Carney,Padraig.Cunningham@cs.tcd.ie

Abstract. In this paper we propose an algorithm we call \NeuralBAG"
that estimates the set of weights and number of hidden units each network
in a bagged ensemble should have so that the generalization performance

of the ensemble is optimized. Experiments performed on noisy synthetic
data demonstrate the potential of the algorithm. On average, ensembles
trained using NeuralBAG out-perform bagged networks trained using
cross-validation by 53% and individual networks trained using \cheating"

by 32%.

1. Introduction

One fundamental weakness of neural networks is that they are unstable or
exhibit high variance [3] (i.e.) small changes in training set and/or parameter
selection can cause large changes in performance. This instability is magni�ed
when real-world systems are modeled because, typically, only a limited amount
of useful training data is available. One way to overcome this instability is to
use bagging, a statistical re-sample and combine technique, �rst proposed by
Breiman [1]. For bagging to work it is important that the predictor is unstable
{ bagging can actually degrade the performance of stable predictors [1].

To symbolically formalise how bagging works, let us �rst assume we have
a predictor (in our case a neural network) constructed using a training set T
that consists of N training samples. Parameters (the weights) !̂ are estimated
using a learning algorithm (e.g. back-propagation) and the network generates
an output ŷ when presented with an input x. Let us denote this as:

ŷ = �(x;T ; !̂) (1)

Now let us imagine an ideal, hypothetical situation where we have a large num-
ber of training sets fTkg

K
k=1 (whereK !1), each consisting of N independent

observations from the same distribution as T (let us call this distribution P ).

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 135-140



Given this ideal situation we could build an ensemble of networks trained us-
ing the fTkg

K
k=1 and combine the estimates for ŷ produced by each network

to improve the quality of predictions. In reality however, we only have one
training set T . Bagging proposes to remedy this situation by generating boot-
strap re-samples of T and using these re-sampled training sets fTbg

B
b=1 (where

B is the number of bootstrap training sets) to mimic the training sets fTkg
K
k=1.

Each bootstrap re-sample Tb consists of N input-output training vectors, sam-
pled at random from T with replacement (see [5] for more on bootstrapping).
The bootstrap distribution P̂ is an empirical approximation to P . Using the
training sets fTbg

B
b=1 we now have a set of networks f�(x;Tb; !̂)g

B
b=1. Bagging

proposes to aggregate these bootstrap versions by averaging to form a bagged
ensemble of networks:

ŷBAG =
1

B

BX
b=1

�(x;Tb; !̂) (2)

In practice, however, bagging neural networks is not so straight-forward. There
are a number of related questions that �rst need to be answered including; how
do we choose the !̂'s for each network in the ensemble so that the generalization
performance of each network is optimized? How many hidden units should
each network in the ensemble have? In this paper we attempt to answer these
questions.

2. The NeuralBAG Algorithm

In this section we describe our proposed NeuralBAG algorithm. We view neural
network (backpropagation) learning as an evolution through models. Using
notation similar to the above, this can be represented as

� = f�(T ; !̂e)g
E
e=1 (3)

where e is the current epoch (training iteration) and E is some \maximum"
number of epochs speci�ed by the modeler. This ignores however the number
of hidden units a network has. In reality, the number of hidden units is very
important and so we extend equation (3) above to a set of sets

� = ff�(T ; !̂he)g
E
e=1g

H
h=1 (4)

where H is some \maximum" number of hidden units speci�ed by the modeler.
Our goal should be to �nd the combination of values for e and h that provide

optimal generalization performance. For individual networks these values could
be estimated by cross-validation for example. For bagged networks, we have
f�bg

B
b=1 where B is the number of networks in the ensemble. For each �b

we must estimate values for e and h. In this section we describe how the
NeuralBAG algorithm can be used to do this. Although for clarity the serial
version of the algorithm is presented here, it is easily converted to parallel form.
The probability a training sample from (a large) training set T will not be part

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 135-140



of a bootstrap re-sampled training set is (1 � 1=N)N � 0:368, where N is the
number of training samples in T . Following the lead of [2] and [6] we use such
\out-of-bag" samples for generalization error estimation.
Step 1: Set-up bootstrap training sets.
GenerateB bootstrap re-samples of T : T �

1
; T �

2
; :::; T �

B where T = f(xn; yn)g
N
n=1,

each (xn; yn) pair denotes an input-output training vector and N denotes the
total number of training vectors in training set T . For notational convenience
we assume a network has only one output, but can have a vector of inputs.
Step 2: Calculate out-of-bag estimates for each training sample.

for n = 1 to N
for h = 1 to H

for e = 1 to E

En(h; e) =

 PB
b=1 

b
n (�(xn;T

�

b ; !̂he))PB
b=1 

b
n

� yn

!2

(5)

where bn = 1 is an indicator variable that indicates whether training sample n
is out-of-bag for training set T �

b ; 
b
n = 1 if it is and bn = 0 if it is not. These

out-of-bag estimates are less noisy than individual out-of-sample estimates and
are therefore more useful (see [2] and [6] for more on this). The values E and
H are chosen by the modeler and should be large enough to ensure over�tting
is observed and all dynamics of the system under study can be modeled by
the networks. At the end of this step, for each training sample (xn; yn), the
modeler will have out-of-bag error estimates throughout the range of epochs
e = (1; 2; :::; E) for each h = (1; 2; :::; H).
Step 3: Aggregate the out-of-bag estimates speci�c to each network in the
ensemble.
for b = 1 to B

for h = 1 to H
for e = 1 to E

Eb(h; e) =
1

NB

NX
n=1

bnEn(h; e) (6)

where Nb =
PN

n=1 
b
n denotes the number of out-of-bag training samples for

training set T �

b . At the end of this step, for each network in the ensemble, the
modeler will have aggregated out-of-bag error estimates throughout the range
e = (1; 2; :::; E) for each h = (1; 2; :::; H).
Step 4: Find the best values for e and h for each network in the ensemble.
for b = 1 to B

OPTb(h; e) =
argmin

h; e (Eb(h; e)) (7)

Here, for each network in the ensemble, the modeler �nds the values for e and
h that minimize out-of-bag error. The corresponding networks are chosen as
the optimal set for the ensemble.

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 135-140



Figure 1: (a) 500 input-output noisy training vectors generated by sampling
input values at random from the interval [�1; 1] and plugging these values into
(8). A noise free version of these values is also included. (b) 1000 test set noise
free target values. Sample predictions for this test set also included. Note the
local minimum produced by the bagged ensemble trained with cross-validation.

3. Experiments

Here we compare the performance of NeuralBAG to competing techniques using
noisy, synthetic training and test data similar to that used in [7]. We use noisy
data here because we want to highlight how NeuralBAG is more successful than
competing techniques at preventing over�tting. Inputs x are randomly drawn
from the interval [�1; 1] and outputs y are generated according to:

y = sin(�x)cos(5�x=4) + �(x) (8)

where �(x) is Gaussian noise with zero mean and var[�(x)] = 0:005+0:005(1+
sin(�x))2.

We randomly generate 10 training sets consisting of 500 input-output vec-
tors and 10 test sets consisting of 1000 input-output vectors. Figure 1(a) above
illustrates one of these training sets and �gure 1(b) a corresponding test set.
Using these, we compare the generalization performance of bagged ensembles
of 200 networks1 trained using NeuralBAG to the generalization performance
of the following:
I-CH (Individual network, CHeating): Networks built using cheating are net-
works that are built with the number of hidden units and epochs that will
provide optimal performance on a speci�c test set. This is done by using the

1As described in [6] little improvement in generalization performance is achieved when
values for B larger than 100 are chosen. As a conservative safety measure we chose B = 200.
We chose E = 30000 and H = 12 for the maximum number of epochs and hidden units to be
investigated by NeuralBAG. Using 8 nodes on an IBM SP2 supercomputer each experiment
took approximately 1 hour of (wall-clock) time to compute.

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 135-140



I-CH stdev B-CV stdev NBAG stdev NBAG-hf stdev

0.0445 0.0037 0.0643 0.0112 0.0303 0.0052 0.0312 0.0084

Table 1: Test set performance of ensembles trained using NeuralBAG versus
competing techniques. Each entry in this table corresponds to an average of test
set root-mean-squared-error performance across 10 experiments (10 di�erent
randomly generated training/test sets).

test set as a validation set during training and choosing the network con�gu-
ration that performs best with this data. This is called cheating because, in
reality, the network would not have access to the test set. Cheating can be
a useful benchmark measure { it provides a close estimate of the best perfor-
mance any network could achieve on a given test set.
B-CV (Bagged ensemble, Cross-Validation): Here we optimize the generaliza-
tion performance of each network in an ensemble of 200 networks using cross-
validation. However, rather than removing part of the training set and using it
as the validation set as is usually done, we use those training vectors that are
excluded from each bootstrap training set following the bootstrap re-sampling
as validation vectors. However we don't \bag" these vectors in any way as
described in section 2 (see equation (5)).
NBAG-hf (Bagged ensemble, NeuralBAG, �xed number of hidden units): An
interesting experiment is to determine how much estimating h, the number of
hidden units improves generalization performance. It is interesting because one
can argue that each network in a bagged ensemble essentially approximates the
same function. If this is the case, to improve computational e�ciency a simpler
mechanism for estimating the number of hidden units could be used (perhaps
even prior to the training process) and each network could be given an equal
number of hidden units. We performed a number of experiments to test this.
We repeated the NeuralBAG experiments, but this time used an average of
the number of hidden units estimated by the algorthm for each network as an
estimate for a �xed value of h.

The results summarized above in table 1 demonstrate the potential of Neu-
ralBAG. On average ensembles trained using NeuralBAG (NBAG) out-perform
individual networks trained using cheating (I-CH) by 32% and bagged networks
trained using cross-validation (B-CV) by 53%. Note the poor performance of
bagged ensembles trained using cross-validation { this technique consistently
provided a very poor estimate of generalization error and therefore also pro-
vided poor estimates for the optimal number of epochs and hidden units.
Mostly only local minimums are found (see (e.g.) �gure 1(b)). This high-
lights how important it is to bag the vectors before combining them to form a
validation set as prescribed in equation (5). This provides less noisy, smoother
estimates of generalization error. A full analytical exposition of why this works
is beyond the scope of this paper but [2] and [6] provide some good general
guidelines. We also compare the performance of ensembles trained using Neu-
ralBAG to ensembles trained using a version of NeuralBAG where h the number

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 135-140



of hidden units remains �xed and is the same for each network in the ensem-
ble. Estimating the (possibly di�erent) number of hidden units each network
in the ensemble should have is justi�ed and provides a modest but consistent
4% improvement in performance. Note that these results are preliminary. The
results of more experiments, that compare the performance of NeuralBAG to
other competing techniques using real-world �nancial time-series data, are also
available [4].

4. Conclusion

The only real drawback of NeuralBAG is its computational cost. However,
since estimating di�erent values for the number of hidden units each network
in the ensemble should have is costly and provides only modest improvements
in performance, for most applications a version of NeuralBAG that does not
estimate the number of hidden units experimentally would be adequate. How-
ever, for real-world safety-critical or �nancial applications, for example, small
improvements in generalization performance can make a big di�erence. For
such applications an accurate estimate for the number of hidden units each
network in an ensemble should have remains important.

References

[1] L. Breiman. Bagging predictors. Machine Learning, 24:123-140, 1996.

[2] L. Breman. Out-of-bag estimation. Technical Report, Statistics Depart-
ment, University of California at Berekely, California, 1996.

[3] L. Breiman. Heuristics of instability in model selection. Technical Report
TR416, Statistics Department, University of California at Berkeley, Cali-
fornia, 1994.

[4] J. Carney and P. Cunningham. Technical Report TCD-CS-1998-23, Com-
puter Science Department, University of Dublin, Trinity College, Ireland,
1998.

[5] B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chapman &
Hall, London, 1993.

[6] T. Heskes. Balancing between bagging and bumping. In M. Mozer, M.
Jordan, and T. Peskes, editors, Advances in Neural Information Processing
Systems 9, pages 466-472, Cambridge, 1997. MIT Press.

[7] T. Heskes. Practical con�dence and prediction intervals. In M. Mozer, M.
Jordan, and T. Petsche, editors, Advances in Neural Processing Systems 9
pages 176-182, Cambridge, 1997. MIT Press.

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 135-140




