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Abstract. In this paper we show several approximation results for
folding networks { a generalization of partial recurrent neural networks
such that not only time sequences but arbitrary trees can serve as input:

Any measurable function can be approximated in probability. Any con-
tinuous function can be approximated in the maximum norm on inputs
with restricted height, but the resources necessarily increase at least ex-
ponentially in the input height. In general, approximation on arbitrary
inputs is not possible in the maximum norm.

1. Introduction

When dealing with structured data, for example, formulas, terms, sequences,
graphs, etc., some kind of recurrence can be found in most cases. This a priori
unlimited recurrence suggests using recurrent connections if a neural network
deals with such data, for example, in a classi�cation task. Indeed, partial
recurrent networks are a natural tool which works on sequences of a priori
unlimited length [3]. Furthermore, they can naturally be generalized to so
called folding networks [4] such that arbitrary trees may serve as inputs. Since
trees are a very general data structure folding networks o�er the possibility to
use subsymbolic methods in various symbolic domains, e.g. theorem proving or
classi�cation of chemical formulas [4, 9]. Additionally, the nodes of the trees
may be labeled with symbolic or subsymbolic data, i.e. discrete or continuous
values, such that folding networks are capable to deal with hybrid data as well
which occur naturally in several domains [2].

Here the question occurs whether folding networks are universal approxi-
mators of mappings from trees into a real vector space. This is a necessary
condition for any formalism to succeed if a function with structured inputs is
to be learned. We will show that folding networks are capable of approximat-
ing any measurable function on trees with real valued labels into a real vector
space in probability even if the weights, the number of layers, and the encod-
ing dimension are restricted. On the contrary, mappings exist that cannot be
approximated in the maximum norm for inputs with unlimited height even if
the formalism of folding networks is somehow extended. If the maximum in-
put height is restricted any mapping can be approximated, but the resources
increase exponentially in the input height.
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Figure 1: Example for a computation by a folding network: The recurrent part
g (left) becomes unfolded according to a speci�c input tree (right).

2. The architecture

We assume that the labels are in Rm. Denote by (Rm)�k the set of trees with

labels in Rm where each node has at most k successors, and by (Rm)�Tk the
restriction to trees of height at most T . The empty node is denoted with nil.
Any nonempty tree t is denoted with t = a(t1; : : : ; tk) if a is the root of t and
ti are the k subtrees. After substituting all open places with nil if necessary,
we can assume that any node except nil has exactly k successors. Due to
the recursive de�nition of trees we can de�ne an induced recursive mapping
~fy : (Rm)�k ! R

l for any f : Rm+k�l ! R
l and initial context y 2 Rl, where

~fy(nil) = y

~fy(a(t1; : : : ; tk)) = f(a; ~fy(t1); : : : ; ~fy(tk)) :

De�nition 1 A mapping f : (Rm)�k ! R
n is computed by a folding network

if a number l, the encoding dimension, an initial context y 2 Rl, and map-
pings g : Rm+k�l ! R

l, h : Rl ! R
n exist which can be computed by standard

feedforward neural networks such that f = h � ~gy.
A folding network consists of two parts, a part induced by g which is applied
recursively according to the structure of the input tree and which encodes the
input tree in a real vector, and a feedforward part h which maps the encoded
tree to an output vector. One example for a computation is depicted in Fig.1.
For k = 1 we obtain partial recurrent networks with sequences as inputs.

3. Approximation in probability

We call a mapping f : (Rm)�k ! R
n measurable or continuous if and only

if any restriction of f to input trees with a �xed structure is measurable or
continuous, respectively. Let P be a probability measure on (Rm)�k. A property
of a function holds locally if it is valid in the neighborhood of at least one point.
A function is Cn if it is n times continuously di�erentiable. All requirements we
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will pose on the activation functions are ful�lled in particular for the standard
sigmoidal activation.

Theorem 2 For any measurable function f : (Rm)�k ! R
n and � > 0 a folding

network h � ~gy exists such that

P (t 2 (Rm)�k j jf(t) � h � ~gy(t)j > �) < � :

The encoding dimension l can be chosen as 2. h can be chosen as a multilayer
network with one hidden layer, locally Riemann integrable and nonpolynomial
hidden activation function, and linear outputs, g can be chosen as a multilayer
network with O(log k) layers with an activation which is locally C2 with a non-
vanishing second derivative, and which is additionally a squashing function in
the �rst hidden layer, i.e. monotonous, limx!1 f(x) = 1, limx!�1 f(x) = 0.

Proof: In a �rst step f is reduced to a discrete mapping: Since f restricted
to trees of a �xed structure can be approximated by a continuous mapping in
probability with arbitrary precision, we can assume that f is continuous. Since
(Rm)�k can be written as the countable union of trees with a �xed height and
limited labels, we can �nd a maximum height T and a positive number B such
that P ((Rm)�kn(]-B;B[m)�Tk ) is arbitrarily small. It is su�cient to approximate

f := f j(]-B;B[m)�Tk . Since f is equicontinuous, we can �nd � > 0 such that for
trees t1 and t2 with the same structure and labels the coe�cients of which di�er
at most � from each other, jf(t1)�f(t2)j < �=2. ]-B;B[ can be decomposed into
disjoint intervals of diameter at most �: I1 = ]b0; b1[, : : : , Iq = ]bq�1; bq[ such
that the probability of trees with some coe�cient in fb0; : : : ; bqg is arbitrarily
small. This de�nes a discretization of f .

In the following step, the recursive part of the network is constructed such
that the single labels are encoded via the corresponding interval numbers, and
the entire tree is encoded in a real number where the encoded labels are written
in pre�x order: g1 : (x1; : : : ; xm) 7! 2 +

Pm

i=1 q
i�1
Pq

j=1(j � 1Ij (xi) � 1) maps
]-B;B[m to f2; : : : ; qm+1g such that the image encodes the intervals uniquely
where the coe�cients of x belong to. The characteristic function 1Ij can be
computed via a step function H(x) = 0, if x < 0, and H(x) = 1, otherwise.
De�ne d = dlog(qm + 1)e and g2 : R1+k�2! R

2,

g2(x; x
1
1; x

1
2; : : : ; x

k
1; x

k
2) = ((0:1)d � (1 + (0:1)dx+ (0:1)dx11 + (0:1)2dx12x

2
1 +

: : :+ (0:1)kdx12 : : :x
k�1
2 xk1; (0:1)

d(k+1)x12 : : :x
k
2) :

g2 implements somehow the concatenation of k strings x11, : : : , x
k
1. The map-

ping g2 � g1 can be computed with a multilayer feedforward network with
O(log k) layers, activation x, x2 (substituting products), and H (�rst layer).
Starting with (0; 0) it induces the mapping of a tree t = a(t1; : : : ; tn) to its
pre�x representation (0:0 : : :01g1(a)repr.(t1) : : : repr.(tk); (0:1)length of repr.�d).

In a third step the activations x, x2, andH are substituted except for a set of
arbitrarily small probability. Because the activation � in g is locally C2, we can
approximate x = lim�!0(�(x0+ �x)��(x0))=��0(x0)) and x2 = lim�!0(�(x1+
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�x) + �(x1 � �x)� 2�(x1))=�2�00(x1)) uniformly on compact intervals for some
x0 and x1, and H(x) = lim�!1 �(�x) for a squashing activation � uniformly
outside a neighborhood of 0. One can �nd di�erent � in the above formulas
such that the image of trees of height at most T and labels in the intervals
]bi + �; bi+1 � �[ for arbitrarily small � consists of disjoint intervals Jj. Two
trees are mapped to the same interval Jj if and only if their respective labels are
contained in the same intervals Ii. The resulting mapping g can be computed as
stated in the theorem. The linear terms in the above quotients are integrated in
the weights, which changes the initial context from (0; 0) to y = (�(x0); �(x0)).

In a last step h is constructed such that it maps each interval Ji obtained
via ~gy to a representative value where trees which are encoded in Ji are mapped
to under f with a maximum deviation of �=2. h can be chosen as described in
the theorem because of [7]. 2

Note that the number of neurons used in this construction depends on the fan-
out k and the number of intervals Ii. In particular, it is limited by O(k � logk+
pn) if a mapping on a �nite set of p trees with purely symbolic labels is to be
interpolated as proved in [6]. Furthermore, results from the feedforward case
lead to the following modi�cation:

Corollary 3 For any measurable function f : (Rm)�k ! R
n exists a folding

network h�~gy which approximates f in probability. The encoding dimension can
be chosen as 2. h and g can be chosen as multilayer networks with one hidden
layer, weights restricted by an arbitrary positive number B, locally Riemann
integrable and nonpolynomial activations in g and the hidden layer of h, and
linear outputs in h. Additionally, the output activation of g has to be locally
homeomorphic (i.e. invertible, g, g�1 continuous).

Proof: Because of Theorem 2 we can approximate f in probability with a
function F � ~Gy where F and G are continuous. The relevant range of G
is contained in a neighborhood of 0 and can be scaled and shifted such that
the output activation � of g is locally homeomorphic in this range. F and
(��1; ��1) � G can be approximated on compact intervals with feedforward
networks h or �g, respectively, with restricted weights, one hidden layer, and
linear outputs [7]. h and g = (�; �) � �g ful�ll the conditions as stated above. 2

Note that we could integrate in the above construction the linear outputs of �g
into the other parts of the network. As a consequence, we could drop the hidden
layer in the recursive part, but this leads to an unlimited encoding dimension.

4. Approximation in the maximum norm

Assume we want to approximate a continuous mapping arbitrarily well on any
input tree. The above construction fails because of two reasons: We have
restricted the maximum input height, and the encoding of input trees in one
real value is not continuous. The latter problem enforces to use an exponentially
increasing encoding dimension in the worst case:
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Theorem 4 Choose T 2 N and a compact set B � Rm. For any continuous
mapping f : B�Tk ! R

n and � > 0 a folding network h� ~gy exists such that jh�
~gy(t)�f(t)j < � for all t 2 B�Tk . g can be a feedforward network without hidden
layer and h a single hidden layer feedforward network with linear outputs. The
other activations are locally Riemann integrable and nonpolynomial. If g is
continuous, the encoding dimension increases at least exponentially in T for
k � 2 and linearly in T for k = 1 for some � and real valued f .

Proof: Assume K � 2. k = 1 is analogous. If the encoding dimension is not
limited it is easy to construct an encoding g such that ~gy simply writes the single
labels of an input tree of height T into one real vector of dimension kT (m+1)+1.
If the actual number of places which are already used, p, is encoded in the
last dimension as (0:1)p and a is a number which is not contained in any
label in B, an encoding is given by h(x; (x11; 0; : : :); x

1
2; : : : ; (x

k
1 ; 0; : : :); x

k
2) =

(a;x;x11;x
2
1; : : : ;x

k
1; 0; : : : ; 0; x

1
2 � : : :�xk2 �(0:1)m+1) where the exact places where

the vectors x21, x
3
1: : : start can be computed with a �nite gain using x12, x

2
2 : : : .

Since the �nite gain can be approximated for example with a sigmoidal network,
the entire mapping g can be approximated with a single hidden layer network
with linear outputs. The linearity can be integrated into the part h and the
connections in g. h can be chosen such that it approximates the continuous

mapping on these encoded trees in RkT(m+1) + 1 to Rn [7].
Surprisingly, this brute force method is somehow the best possible encoding.

Let an encoding dimension l be given. Assume g is continuous. Choose x 2 B
and � > 0 such that the ball of radius � with center x is contained in B. Choose
T with mkT�1 > lk. Assume, a1, : : : , amkT�1 are di�erent points in B. The
mapping f where the image of a tree with height T , root ai, and internal nodes
a1 is the (i mod m) + 1st coe�cient of the (i div m) + 1st leaf can be com-
pleted to a continuous mapping. The approximation h�g(ai; ~gy(t1); : : : ; ~gy(tk))
on these trees decomposes into a mapping �g : BkT�1 ! R

lk and h � g where
necessarily points p and �p in the sphere of radius � and center (x; : : : ;x) in

BkT�1 exist with �g(p) = �g(�p) because of the Theorem of Borsuk-Ullam [1].
Consequently, at least one value of h � ~gy di�ers from the desired output at

least �=
p
mkT�1. An appropriate scaling leads to the distance �. 2

As a consequence, continuous mappings cannot be approximated in the maxi-
mumnorm with limited resources for restricted inputs. Furthermore, the above
mapping f which implements somehow the identity on the leafs demonstrates
that an approximation of a mapping and its derivative in probability is not pos-
sible in general with a restricted encoding dimension l. This is due to the fact
that the determinant of the Jacobian of an approximation h � ~gy is 0 because
the �rst part �g as above maps into a low dimensional vector space.

The necessity to increase the encoding dimension shows that arbitrary con-
tinuous mappings cannot be approximated in the maximum norm on real la-
beled input trees with unlimited height with a continuous folding network. But
even for purely symbolic inputs mappings exist which cannot be approximated
with any reasonable network for arbitrary input length [5]. The argumentation
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for this fact holds for sequences with binary labels, and consequently for trees
with k � 2 and unary labels, too. The argumentation only uses the fact that
the VC dimension of folding networks with limited resources is restricted by a
polynomial in 2T if T is the maximum input height. Therefore it even transfers
to more general models, where for example the weights depend polynomially
on the inputs. However, for special functions an approximation is possible as
shown for example in [8, 10] for �nite automata or tree automata, respectively.

5. Conclusion

It has been shown that folding networks are capable of approximating any
reasonable function on real labeled trees in probability even with restricted re-
sources, i.e. limited weights, encoding dimension, and number of hidden layers.
This fact makes them well suited for application areas which deal with symbolic
as well as subsymbolic data. However, several problems occur if an arbitrary
mapping shall be approximated in the maximum norm. This indicates that an
approximation of symbolic mappings with large inputs or of hybrid mappings
that are sensitive to small changes of the labels may lead to very large networks.

References

[1] P. Alexandro� and H. Hopf. Topologie. Springer, 1974.

[2] P. Frasconi, M. Gori, and A. Sperduti. A general framework for adaptive pro-
cessing of data structures. IEEE Trans. on Neural Networks, 9(5), 1998.

[3] C.L. Giles and M. Gori, editors. Adaptive Processing of Sequences and Data
Structure. Springer, 1998.

[4] C. Goller. A connectionist approach for learning search control heuristics for
automated deduction systems. PhD thesis, Technical University of Munich, 1997.

[5] B. Hammer. On the approximation capability of recurrent neural networks. In
International Symposium on Neural Computation, 1998.

[6] B. Hammer and V. Sperschneider. Neural networks can approximate mappings
on structured objects. In 2nd International Conference on Computational Intel-
ligence and Neuroscience, 1997.

[7] K. Hornik. Some new results on neural network approximation. Neural Networks,
6, 1993.

[8] A. K�uchler. On the correspondence between neural folding architectures and
tree automata. Technical report, University of Ulm, 1998.

[9] E. Schmitt and C. Goller. Relating chemical structure to activity with the
structure processing neural folding architecture. In Engineering Applications of
Neural Networks, 1998.

[10] P. Tino, B.G. Horne, C.L. Giles, and P.C. Collingwood. Finite state machines
and recurrent neural networks { automata and dynamical systems approaches.
In Neural Networks and Pattern Recognition. Academic Press, 1998.

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 33-38




