ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 57-62

Neural learning of approximate simple
regular languages

Mikel L. Forcada and Antonio M. Corbi-Bellot,
Departament de Llenguatges i Sistemes Informatics,
Universitat d’Alacant, E-03071 Alacant, Spain.

and

Marco Gori and Marco Maggini,
Dipartimento di Ingegneria dell’Informazione,
Universita degli Studi di Siena,
via Roma, 56, I-53100 Siena, Italy.

Abstract.  Discrete-time recurrent neural networks (DTRNN) have
been used to infer DFA from sets of examples and counterexamples;
however, discrete algorithmic methods are much better at this task and
clearly outperform DTRNN in space and time complexity. We show,
however, how DTRNN may be used to learn not the ezact language that
explains the whole learning set but an approzimate and much simpler
language that explains a great majority of the examples by using sim-
ple rules. This is accomplished by gradually varying the error function
in such a way that the net is eventually allowed to classify clearly but
incorrectly those strings that are difficult to learn, which are treated as
exceptions. The results show that in this way, the DTRNN usually learns
a simplified approximate language.

1. Introduction

Discrete-time recurrent neural networks (DTRNN) may be trained to to rec-
ognize regular languages from sets of example and counterexample strings
[2, 10, 4, 12, 6, 3], under the intuitive assumption that, as state machines,
DTRNN can emulate deterministic finite automata (DFA), that is, regular-
language recognizers. DTRNN can indeed learn simple DFA but they do so at
a considerable expense of resources, and their learning behavior does not nicely
scale to larger DFA. On the other hand, very efficient discrete algorithms exist
[9] that are capable of doing the same task in polynomial time.

One might contend that there is no use in pursuing the study of DTRNN
as adaptive recognizers. But if one is interested in obtaining not an ezact DFA
that recognizes all the strings in the learning set, which may be quite complex,
but a small, approrimate DFA which explains all but a few examples, then

Work supported by grants TIC97-0941 and HI1996-0055 of the Spanish government



ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 57-62

the poor scaling behavior of DTRNNs and their bias toward very simple rep-
resentations, which could be otherwise considered as weaknesses, may be used
advantageously to accomplish the task of obtaining a simple and approximate
language.

This approach has been explored by Gori and coworkers [5], who view the
training set as a noisy or corrupted version of a hypothetical clean learning
set for a very simple language; this “noise” only affects the membership of
the strings: a few counterexamples are turned into examples and vice versa.
When a DTRNN learns to behave as a DFA, its state space tends to organize
in clusters of low dimensionality that correspond to the states of the DFA: a
clustering algorithm is used in [5] to define these states. A promising alternative
approach is described in [7]: an additional term is added to the error function to
enforce weight configurations that ensure correct DFA behavior of the DTRNN.

In this work, we propose the use of an error function that varies during
the learning process in such a way that the net is eventually allowed to classify
clearly but incorrectly those strings that are difficult to learn, which are treated
as exceptions.

2. Definitions and methods

Languages and automata: A language is a set of finite-length strings over a
finite alphabet ¥ = {0}, 02,...,0x|}. The length of a string w will be denoted
|w|. A deterministic finite automaton (DFA) is defined as a 5-tuple M =
(@Q,%,6,q1, F), where @Q is a finite number of states, ¥ is the input alphabet, §
is the next-state function § : @ x ¥ — @ which defines which state ¢' = §(q, o)
is reached by the automaton after reading symbol o when in state ¢q, ¢; € @ is
the initial state of the automaton (before reading any string) and F' C @ is the
set of accepting states of the automaton. The language L(M) accepted by the
automaton contains all the strings that bring the automaton to an accepting
state. The languages accepted by DFA are called regular languages.

Second-order DTRNN as string processors: We have used a second-
order DTRNN identical to those used in [4] and [3], having ny inputs and nx
state units. The value of the k-th input at time ¢ is denoted by wug[t]; the state
of the i-th state unit after processing the input at time ¢ is denoted by z;[t]. The
dynamics of the network is defined by z;[t] = ¢ (Z?jl vl Wijnajlt — l]uk[t])
where i = 1,...,nx and g(z) = 1/(1 + exp(—z)). When a DTRNN is used
to process strings, the number of input units ny is set to |X|, the size of the
alphabet and a local (exclusive or one-hot) encoding is used so that, for each
input symbol, the next state is computed by a different single-layer perceptron.
After complete processing of a string w, a value of z1[|w|] close to 1 denotes
acceptance and a value close to 0, rejection; two different criteria are used:
the tight criterion (rejection: z;[|wl|] €]0,27], acceptance: z;[|w|] € [1 — 27,1])
and the loose criterion (rejection: zi[|w|] < 0.5; acceptance: zi[|w|] > 0.5).



ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 57-62

Second-order DTRNN are capable of emulating the behavior of any finite-state
machine, provided that nx = |@| + 1 [8, 1] (although a smaller second-order
DTRNN may also emulate the DFA). It may be therefore expected that small
DTRNN can only stably emulate and furthermore, can only easily learn small
DFA, although the nature of the inductive bias of gradient-based learning al-
gorithms is not well known.

Training algorithms and error functions: We use a gradient-based method,
the real-time recurrent learning (RTRL) [13], but this choice is not critical to
our study. We train the weights as in [4] and the initial state z;[0], i =
1,...,nx as in [3]. In most papers, the error function for each string w is
0.5(z1[|w|] — Tw)?, where the target T, is either 7 (rejection) or 1 — 7 (accep-
tance). A training run is finished when all |z;[|w|] — T| < € (here, € = 7, but
any € < 7 is adequate).

The new error function is chosen so that it varies during learning. Consider
a learning set in which a large majority of strings are labeled following the
rules of a simple DFA whereas a small number of them do not follow these
simple rules (their membership labels are reversed). When one presents this
learning set to a small second-order DTRNN, it seems that the net initially
easily learns the correct behavior for a large majority of strings, but fails to
classify clearly and correctly a small number of them; a study of the regions of
state space visited by the DTRNN indicates the presence of clusters that may be
assumed to correspond to the states of the simple DFA classifying the majority
of strings. Later, when trying to learn the labels of this smaller number of
strings, the clusters dissolve and the generalization performance (error rate)
of the networks when processing longer strings degrades, possibly because the
DTRNN is incapable of representing (or learning) a more complex DFA.

Accordingly, we propose the following scheme: the error function will change
when the network classifies clearly (even if not correctly) a fraction of the train-
ing set whose size is equal (or close) to the expected number of correct strings.
The new error function will allow strings to be incorrectly but clearly classified
by having two minima: one at the correct target 7, and another one at the
reversed target 1 —T,,. This is equivalent to performing unsupervised learning
at the later stage of the learning process. It is assumed that strings that are
already correctly classified will not abandon the minimum around the correct
target, whereas strings incorrectly classified will “fall” in either of the two target
values, now that they are given an additional choice. The transition to the new
function is gradual, to avoid disturbing the gradient descent algorithm. The ini-
tial (completely supervised) error function is ey(z,T,) = 1 (z — T,)* and the
final error function (completely unsupervised) is e, (z) = %(;””__TT)Z%;_(E;_TT);;
which has two minima at ¢ = 7 and ¢ = 1 — 7 and a maximum at z = 0.5.
The transition is modelled by using an increasing parameter A € [0, 1] to com-
bine both functions: e(z,Ty,\) = (1 — Nes(z,Tw) + Aeu(z). The transition
between one minimum and two minima occurs for A\ = A\*(7); in our experi-
ments, A*(0.1) & 0.78. To isolate exceptions, we want this transition to occur




ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 57-62

when the net has learned to classify clearly a fraction of the strings similar to
the expected fraction of correct strings. For this purpose, if ngpqin is the num-
ber of strings in the training set, nex. the expected number of exceptions, and
Nclear the number of strings that have been clearly classified (nciear), One sets
A = (Nclear/Mtrain)® With z chosen so that A = A* when nclear = Ntrain — Nexc-

3. Experiments

Recovering the original language: For each one of Tomita’s [11] seven
simple languages, a sample of all membership-labeled strings with length 1-9
is generated. Then, it is corrupted (in each simulation) by flipping (reversing)
the membership of strings chosen at random according to a uniform distribution
with a flip probability r (r=0.01, 0.02, 0.03 and 0.05); these strings are marked
as exceptions for further analyses. The strings with length 1-6 are used for
training and the rest are the test set; nx is set to the smallest number of
hidden units preliminarily observed to converge on sets without exceptions (2
for Ly; 3 for Ly, L3, Ly and L7; 4 for Ly and 5 for Lg). For each value of r,
30 runs are performed. The number of exceptions found in each training set
(nexc) follows the binomial distribution, which is rather broadly spread around
the expected value (Nexc) = Thgrain, With ngrain the number of strings in the
training set.

The learning rate and learning momentum are fixed to o = 1.0 and n = 0.2
respectively, and a run is considered to succeed if the DTRNN recovers the
uncorrupted language, that is, it (a) it learns to correctly label (tight criterion)
the learning set according to the uncorrupted language; (b) does so in less than
2000 epochs, and (c) correctly labels (loose criterion) the test set. Table 1
shows, for each language and exception rate, the fraction of succeeding jobs,
the average number of epochs and its standard deviation. The above criteria for
success are very stringent, because they accept only those DTRNN that have
captured a stable representation of the original DFA. In a real application,
the DFA is not known and exceptions have to be discovered by the net by
relying on an estimation of the exception rate. Indeed, some jobs isolated a
different set of exceptions from the training set (usually less than the ones
marked as such), discovering a different DFA with a remarkable generalization
performance. Other jobs isolate a very large number of exceptions (25-35),
sometimes very early, due to the nature of the stopping criterion (clear as
opposed to correct classification).

Learning an approximate language: The second set of experiments sim-
ply probes the ability of the DTRNN to learn simple DFA from the samples.
Training is less stringent: a run succeeds if the net learns to label (tight crite-
rion) the training set regardless of the relabeling produced, in less than 2000
epochs. To monitor the ability of the DTRNN to learn a simple DFA we
use a classical DFA inference algorithm, RPNI, [9], both the corrupted and the
DTRNN-relabeled training set. Table 2 shows, for each language and exception



ESANN'1999 proceedings - European Symposium on Artificial Neural Networks

Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 57-62

7 =0.01 7 =0.02 7 =0.03 7 =0.05
I, 23/30 (26 £ 5) 17/30 (28 £ 6) 18/30 (28 £ 6) 10/30 (36 + 14)
Ly | 21/30 (180+£39) | 17/30 (221 + 51) 4/30 (195 £21) | 5/30 (250 & 120)
Lz | 14/30 (300 4+ 480) | 9/30 (310 & 410) | 10/30 (190 & 360) | 6/30 (250 + 340)
La | 11/30 (160 +190) | 3/30 (120 + 40) 7/30 (240 = 300) 2/30 (80 + 17)
Ls | 8/30 (570 +180) | 6/30 (430 & 180) 2/30 (190 + 110)

10/30 (280 = 330)

5/30 (500 =+ 720)

2/30 (148 + 72)

7/30 Esso + 670)
Lg | 11/30 (140 =+ 65) (
(

L7 | 5/30 (159 =+ 85) 9/30 (222 + 85) 6/30 (220 +100) | 2/30 (381 & 170)

Table 1:
samples

Ability of the network to recover Tomita’s languages from corrupted

rate, the number of succeeding jobs and the average and standard deviation of
(a) the number of states RPNI produces for the corrupted and the relabeled
training set (|@Q|before and |@Q|ater respectively); the number ney of exceptions
isolated; and the sum of the two precedent values, nexc + |Q|after, @ measure
of approximation (also used in [5]). As can be seen, |Q|aster is usually smaller
than |@|pefore, and in many cases it approaches the size of the original (Tomita)
DFA.

4. Concluding remarks

The results show that DTRNN can be used to infer simple, approximate DFA
describing a majority of the examples when the sample cannot be described
by a simple DFA due to the presence of noise in the membership labels or
to the fact that the sample indeed does not correspond to any simple DFA.
Our method, which uses an error function that changes during training to
accomodate exceptions, only needs a hint about the expected exception rate
in the learning set; when this rate is not known, the parameter may be used
to roughly regulate the quality of the approximation. We plan to study the
stability of the DFA representation learned by the DTRNN.

References

[1] R.C. Carrasco, M.L. Forcada, M.A. Valdés, R.P. Neco. Stable encoding of finite-
state machines in discrete-time recurrent neural nets with sigmoid units, sub-
mitted to Neural Computation.

[2] A. Cleeremans, D. Servan-Schreiber, J.L. McClelland. Neural Computation,
1(3):372-381, 1989.

[3] M.L. Forcada, R.C. Carrasco. Neural Computation, 7(5):923-930, 1995.

[4] C.L. Giles, C.B. Miller, D. Chen, H.H. Chen, G.Z. Sun, Y.C. Lee. Neural Com-
putation, 4(3):393-405, 1992.



ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 57-62

Ly SUCCESS RATE [Qlpefare [Qlafrer nexc [Qlafrertnexc
0.01 27730 5.70(2.75 ) | 1.00(0.00) | T.11(0.74) 2.11(0.74 )
0.02 18/30 8.04(2.03) | 1.00(0.00) | 2.00(0.94) 3.00(0.94)
0.03 18/30 9.83(2.50 ) | 1.00(0.00) | 2.83(1.38) 3.83(1.38)
0.05 19/30 12.68(1.72 ) | 1.00(0.00) | 4.63(1.31) 5.63(1.31)
Loy SUCCESS RATE [@lpefore [Qafter nexc [Qlafter+nexc
0.01 23/30 6.35(3.21 ) | 1.91(0.58) | 1.91(2.22) 3.83(1.86 )
0.02 18/30 7.50(3.22 ) | 2.11(0.94) | 2.33(2.08) 1.44(2.01)
0.03 11/30 10.45(1.78 ) | 2.36(1.07) | 3.73(2.05) 6.09(1.08 )
0.05 17/30 10.94(2.58 ) | 1.76(0.73 ) | 4.82(2.31) 6.50(1.88 )
L3 SUCCESS RATE [Qlbefore [Qlafter nexc [Qlaftertnexc
0.01 14/30 6.36(2.38 ) | 3.00(0.00) | 0.93(0.80) 3.93(0.80 )
0.02 14/30 9.93(3.43) | 3.00(0.00) | 3.43(7.14) 6.43(7.14)
0.03 16/30 11.00(2.87 ) | 2.94(0.24) | 4.88(9.66 ) 7.81(0.42)
0.05 8/30 15.75(3.73 ) | 3.00(1.00) | 12.88(15.48 ) | 15.88(15.24 )
Ly SUCCESS RATE [Qlbefore [Qafter nexc [Qlafter+nexc
0.01 16/30 756(3.24 ) | 2.94(1.03) | 5.00(10.42) 7.94(9.70 )
0.02 14/30 9.20(3.79 ) | 2.86(0.52) | 4.14(8.64) 7.00(8.13 )
0.03 15/30 13.40(3.18 ) | 2.67(1.25) | 11.87(13.27 ) | 14.53(12.28 )
0.05 8/30 11.88(2.76 ) | 2.50(0.87 ) | 12.00(13.64 ) | 14.50(12.78 )
Ly SUCCESS RATE [Qlhefore [Qlafter nexc |@]after+nexc
0.01 7/30 5.29(1.48 ) | 4.00(0.00) | 0.43(0.49) 1.43(0.49 )
0.02 6/30 7.83(3.48) | 5.00(1.41) | 0.83(0.90) 5.83(1.77 )
0.03 6/30 12.33(2.62 ) | 5.50(1.50) | 2.33(0.75 ) 7.83(1.95)
0.05 1/30 17.00(0.00 ) | 2.00(0.00 ) | 22.00(0.00 ) | 24.00(0.00 )
L SUCCESS RATE [Qlhefore [Qlafter nexc [Qlafter Fexc
0.01 20/30 7.05(2.96 ) | 4.20(3.00) | 3.85(10.07) 8.05(9.95 )
0.02 14/30 9.07(2.79 ) | 5.64(3.35) | 0.93(0.80) 6.57(3.06)
0.03 12/30 11.83(2.44 ) | 7.00(4.34) | 3.50(4.92 ) 10.50(5.91 )
0.05 13/30 15.54(3.30 ) | 6.15(3.80 ) | 7.23(8.55) 13.38(3.00)
Ly Success RATE [Qlhefore [Qlafter nexc [Qlafter+nexc
0.01 14/30 7.36(2.64 ) | 3.36(1.23) | 7.00(12.20) | 10.36(10.97 )
0.02 16/30 11.12(2.74 ) | 3.69(1.45) | 6.62(10.93 ) 10.31(9.65 )
0.03 14/30 13.09(3.06 ) | 3.20(1.83) | 12.79(13.93 ) | 16.07(12.24 )
0.05 7/30 15.86(3.23 ) | 2.71(1.48 ) | 18.57(14.07) | 21.29(12.84)

Table 2: Neural relabeling: success rate, size of exact and approximate DFA,
and number of exceptions (see text)

[6] M. Gori, M. Maggini, G. Soda. IEEE Transactions on Neural Networks 9(3):571—
575, 1998.

[6] P. Manolios, R. Fanelli. Neural Computation 6(6):1154-1172, 1994.
[7] R.P. Neco, S.C. Kremer, M.L. Forcada. In Proc. ICANN’98, v. 2, p. 529-534.
[8] C.W. Omlin and C.L. Giles. Journal of the ACM 43(6):937-972, 1966.

[9] J. Oncina, P. Garcia. In Advances in Structural and Syntactic Pattern Recogni-
tion. World Scientific, 1992.

[10] J.B. Pollack. Machine Learning 7:227-252, 1991.
[11] M. Tomita. In Proc. 4th Ann. Cognitive Sci. Conf, p. 105-108.
[12] R.L. Watrous, G.M. Kuhn, Neural Computation 4(3):406-414, 1992.

[13] R.J. Williams, D. Zipser, Neural Computation 1(2):270-280, 1989.





