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Abstract. In recent years, there has been a lot of interest in the use of
discrete-time recurrent neural nets (DTRNN) to learn �nite-state tasks,
and in the computational power of DTRNN, particularly in connection
with �nite-state computation. This paper describes a simple strategy
to devise stable encodings of sequential �nite-state translators (SFST)
in a second-order DTRNN with units having bounded, strictly growing,
continuous sigmoid activation functions. The strategy relies on bounding
criteria based on a study of the conditions under which the DTRNN is
actually behaving as a SFST.

1. Introduction

The study of the relationship between DTRNN and �nite-state machines (FSM)
[1, 2, 3] is partly motivated by the fact that one can view DTRNN as state
machines which are not �nite: a new state for the hidden units is computed from
the previous state and the currently available input in each cycle, and possibly
an output is computed in each cycle too. Under this intuitive assumption a
number of researchers set out to test whether DTRNN with sigmoid activation
functions could learn FSM behavior from samples [2, 4, 5]. These works show
that, indeed, DTRNN may learn FSM-like behavior from samples, but some
problems persist: the correct behavior is observed for short input strings but for
longer input strings, incorrect state representations may be obtained. This is
often called instability. Some researchers have set out to de�ne ways to program
or encode a sigmoid-based DTRNN so that it behaves as a given FSM without
stability problems [3, 6]. In this paper, we outline a simpli�ed procedure to
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prove the stability of a devised encoding scheme for a special class of �nite-
state translators (which includes Mealy machines) in a second-order DTRNN
architecture.

2. De�nitions

ExtendedMealy machines: Formally, an extended Mealy machine (EMM)
is a six-tupleM = (Q; �; �; Æ; �; qI) where Q = fq1; q2; : : : ; qjQjg is a �nite set
of states ; � = f�1; �2; : : : ; �j�jg is a �nite input alphabet; � = f
1; 
2; : : : ; 
j�jg
is a �nite output alphabet; Æ : Q��[f�g ! Q is the next-state function, where �
represents the empty string; � : Q��[f�g ! �[f�g is the output function; and
qI 2 Q is the initial state. In EMM, transitions can occur without consuming
input or without producing output. For the machine to remain deterministic,
states are allowed to have transitions de�ned either on � (�-transitions) or on
input symbols but not on both. Loops with only �-transitions are not allowed
in these machines. A Mealy machine is a special case of EMM in which transi-
tions consuming no input or producing no output are not allowed. EMM allow
for a general class of sequential translations that are not synchronous or length
preserving1.

Discrete-time recurrent neural networks: DTRNN [8] may be viewed
as neural state machines (NSM), and de�ned as follows: a DTRNN acting
as a neural Mealy machine is a six-tuple N = (X;U; Y; f ;h;x0), where X =
[S0; S1]

nX is the state space of the NSM, with S0 and S1 the values de�ning
the range of outputs of the transfer functions, and nX the number of state
units; U = RnU de�nes the set of possible input vectors, with nU the number
of input lines; Y = [S0; S1]

nY is the set of outputs, with nY the number of
output units; f : X � U ! X is the next-state function, a feed-forward neural
network which computes a new state x[t] from the previous state x[t � 1] and
the input just read u[t]; h : X �U ! Y is the output function, that is, a feed-
forward neural network which computes a new output y[t] from the previous
state x[t � 1] and the input just read u[t]; and �nally, x0 is the initial state,
that is, the value that will be used for x[0]. A commonly used second-order
DTRNN architecture [2, 4] uses a next-state function whose i-th (i = 1; : : : ; nX)

coordinate is : fi(x[t � 1];u[t]) = g
�PnX

j=1

PnU
k=1W

xxu
ijk xj [t� 1]uk[t]

�
, where

g : R ! [S0; S1] is a sigmoid function. The output function is hi(x[t�1];u[t]) =

g
�PnX

j=1

PnU
k=1W

yxu
ijk xj [t� 1]uk[t]

�
, i = 1; : : : ; nY . All weights are real num-

bers.
A neural EMM is a neural Mealy machine that has two additional output

units: yU [t], the \advance input" control signal for cycle t + 1, and yY [t], the
\output length" control signal. In each cycle, if the previous yU [t] was high,
input is advanced and the symbol just read is presented to the network; if yU [t]
was low, a special symbol is presented without advancing the input. If yY [t] is
high then the output is taken from the output units; if yY [t] is low, the net has

1EMM perform the same transductions as deterministic letter transducers[7]
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no output in cycle t. The values of the control units are computed in the same
way as the other outputs.

When DTRNN are used to learn FSM behavior from samples [2, 4, 5], a com-
mon choice is to use continuous, real-valued activation functions for neurons in
the DTRNN; this allows the construction of gradient-based learning algorithms.
We will consider a general class of sigmoid functions in which any element g
has the following four properties: (1) strictly growing (g0(x) > 0 8x 2 R), (2)
continuous, (3) positive (g(x) � 0 8x 2 R), and (4) bounded (between S0 and
S1, with S1 > S0): g : R ! [S0; S1]. Note that as a consequence of these
properties, g has an inverse2. In this paper, the output range of all units,
[S0; S1] will be partitioned in three subintervals, high: [�1; S1], low: [S0; �0],
and forbidden: ]�0; �1[, with S0 < �0 < �1 < S1.

3. Conditions for DTRNN to behave as EMM

Casey [9] found that a DTRNN robustly performing a �nite-state computation
must organize its state space in mutually disjoint, closed sets with nonempty
interiors corresponding to the states of the FSM. These states are the sets of
points such that if the DTRNN is initialized with any of them, it will produce
the same output as the FSM initialized in the corresponding state. Following
this formulation, a DTRNN N behaves as an EMM M when the following six
conditions are met:

Partition of state space: Each state qi 2 Q is assigned a nonempty
region Xi � X such that the DTRNN N is said to be in state qi at time t when
x[t] 2 Xi; these regions must be disjoint. Note that there may be points of X
that are not assigned to any state. In our encoding the state qi is assigned a
region Xi(�0; �1) = fx 2 X jxi 2 [�1; S1]; xj 2 [S0; �0]; i 6= jg (the regions are
disjoint because �0 < �1).

Representation of input symbols: Each possible input symbol �k 2 �
is assigned a di�erent vector uk 2 U . In our encoding, the j-th coordinate of
uk, ujk equals Æjk (exclusive or unary encoding of inputs).

Interpretation of output: Each possible output symbol 
m 2 � is as-
signed a nonempty region Ym � Y such that the DTRNN N is said to output
symbol 
m at time t when y[t] 2 Ym; these regions must be disjoint. In our
encoding scheme, they are de�ned by Ym(�0; �1) = fy 2 Y jym 2 [�1; S1]; yn 2
[S0; �0]; n 6= mg, for each output symbol 
m.

Correctness of the initial state: The initial state of the DTRNN N ,
belongs to the region assigned to the initial state qI : x0 2 XI . In our encoding
the initial state is x0 = fS0+ ÆiI (S1�S0)g

nX
i=1, correct independently of �0 and

�1.
Correctness of the next state function: For any state qj and symbol �k

ofM , the transitions performed by the DTRNN N from any point in the region
Xj assigned to state qj when symbol �k is presented to the network must lead to

2The commonly used logistic function: gL(x) = 1=(1 + exp(�x)), g : R ! [0; 1] has these
properties.
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points that belong to the region Xi assigned to qi = Æ(qj ; �k); in our encoding,
this may be expressed as fk(Xj(�0; �1)) � Xi(�0; �1) 8qj ; �k : Æ(qj ; �k) = qi
where fk(A) = ff(x;uk) : x 2 Ag.

Correctness of output: For any state qj and symbol �k of M , the
output produced by the DTRNN N from any point in the region Xj as-
signed to state qj when symbol �k is presented to the network belongs to
the region Ym assigned to 
m = �(qj ; �k); in our encoding scheme, this may
be expressed as hk(Xj(�0; �1)) � Ym(�0; �1) 8qj ; �k : �(qj ; �k) = 
m, where
hk(A) = fh(x;uk) : x 2 Ag. If in cycle t, M has no output (its output symbol
is �) then yY has to be low in that cycle, and high otherwise. If in the next
cycle M is in a state with only �-transitions, then yU has to be low, and high
otherwise.

4. Encoding of EMM in DTRNN

To encode extended Mealy machines in the second-order DTRNN described
in secion 2., we will use nX = jQj, nU = j�j, and nY = j�j, and two special
outputs for the control units. Now we have to de�ne the weights that de�ne the
next-state and output functions. The weights depend on a single adjustable
parameter H > 0.

The values of the weights for the next-state, output and control functions
are de�ned as:

W xxu
ijk =

�
H if Æ(qj ; �k) = qi
�H otherwise

W yxu
ijk =

�
H if �(qj ; �k) = 
i
�H otherwise

WUxu
jk =

�
H if Æ(qj ; �k) =2 Q�

�H otherwise
W Y xu
jk =

�
H if �(qj ; �k) 6= �
�H otherwise

where Q� is the set of states having only �-transitions. The weights WUxu
jk

and W Y xu
jk are used to compute the outputs of the control units yU and yY .

Using this weight scheme, it may be shown [10] that the DTRNN constructed
behaves exactly as the corresponding extended Mealy machine (the next state
and output function are correct) when �0 + �1 = 1 and g (�H +NH�0) �
�0. These conditions are derived from a worst-case analysis and the general
conditions in the previous section, and therefore they are suÆcient but not
necessary, and so, it may be the case that smaller values of H and larger values
of �0 may still yield a DTRNN that has the corresponding behavior. The
preceding inequality may be easily solved for �0 by taking dH=d�0 = 0, and
then the resulting equation may be iteratively solved to produce the values
shown in table 1.

5. Experimental Results

We have performed experiments to estimate the minimum value of H needed
to ensure correct encodings of randomly-generated extended Mealy machines.
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N 2 3 4 5 6 7 10 30

H 2+ 3:113 3:589 3:922 4:181 4:392 4:863 6:224

�0 0:5� 0:1220 0:0753 0:0538 0:0416 0:0336 0:0210 0:0054

Table 1: Values of weights and limiting values for encoding a EMM on a (second-
order) DTRNN. Note that �1 = 1 � �0. The notation 2+ (resp. 0:5�) is used to
represent a value arbitrarily close to 2 (resp. 0:5) from the right (resp. left).

For each machine, we looked experimentally for this value by searching for
H(L), the minimum value of H needed to ensure correct behavior3 of the
network for strings of length L. In the experiments, we randomly generated
ten di�erent EMM for each automaton size (jQj = 3; 4; 7; 10) and computed
H(L) for L = 1; 2; : : : ; 20 to a precision of 0:01 for each FSM4. In Figure 1 we
show H(L) for some EMM. For each EMM size, the highest H(L) obtained is
shown, normalized with respect to the theoretical value of H (Hth) given in
Table 1. We show two sets of experiments: the �rst one using the theoretical
values of �0 and the second one using �0 = 0:5 (no forbidden interval). As may
be seen, H(L) increases with L, is smaller than the theoretical upper bound
Hth in Table 1, and seems to stabilize around a value, Hexp, that is smaller than
Hth. This can be explained by the fact that we performed a worst-case analysis.
This experimental value Hexp is smaller when we take �0 = 0:5, that is, using
no forbidden interval. The results con�rm that the suÆcient conditions derived
can be used to encode sequential transducers.

6. Concluding Remarks

In this paper we have described a simple strategy to encode a class of sequential
�nite-state translators in DTRNN, and shown that this encoding ensures that
the network has a stable behavior for arbitrarily long input strings. This simple
approach applies to DTRNN having continuous, positive, strictly growing and
bounded activation functions.
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Figure 1: Normalized weight values for randomly-generated EMM of di�erent sizes.
Dotted lines: jQj = 3; 4; 7; 10 and theoretical �0. Continuous lines: jQj = 3; 4; 7; 10
and �0 = 0:5.
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