ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 45-50

Learning Search-Control Heuristics for
Automated Deduction Systems with
Folding Architecture Networks

Christoph Goller

Institut fiir Informatik, TU Miinchen, Arcisstr. 21,
D-80290 Miinchen, Germany, goller@informatik.tu-muenchen.de

Abstract. During the last years, folding architecture networks and
the closely related concept of recursive neural networks have been devel-
oped for solving supervised learning tasks on data structures. In this pa-
per, these networks are applied to the problem of learning search-control
heuristics for automated deduction systems. Experimental results with
the automated deduction system SETHEO in an algebraic domain show a
considerable performance improvement. Controlled by heuristics which
had been learned from simple problems in this domain the system is able
to solve several problems from the same domain which had been out of
reach for the original system.

1. Introduction

In almost all fields of scientific and technical reasoning, people and systems
assisting them have to deal with structured objects. Examples are chemical
structures, algebraic (mathematical) expressions, software source code, and
all kinds of graphs. Informally speaking, structured object are composed of
‘smaller’ objects, which may be structured too. Though the objects that are
usually considered are finite, the size of objects within one domain is often not
limited and one normally has objects of very different size within one domain.
This contrasts with the static kind of data (fized-length real vectors) usually
handled by statistical pattern recognition or neural network approaches.
During the last years, folding architecture networks (FAs) [4, 3] and the
closely related concept of recursive neural networks [2] have been developed
for solving supervised learning tasks (such as classification and prediction) on
data structures. Applications in the fields of chemistry and logo recognition
are described e.g. in [8, 1]. In this paper, FAs are applied in the field of auto-
mated deduction. The goal in automated deduction' (AD) is to automatically
find formal proofs for conjectures based on sets of axioms. Both, conjectures
and axioms are specified in a formal language (e.g. 1st order predicate logic).
The central problem in AD is the explosive growth of search spaces with proof
length. Therefore methods of guiding and controlling the search process are

IMost of the symbolic Al systems perform some kind of logic-based deductive inference.

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 45-50

indispensable. In this paper, FAs are applied for learning search-control heuris-
tics for AD-systems from examples of successful proof searches. In particular,
FAs are used for learning heuristic evaluation functions (HEFs) for algebraic
expressions, and these HEF's are then used for controlling the search process of
an AD-system. For a more detailed description of the application see also [3].

The paper is organized as follows. In Section 2, FAs are briefly reviewed
and the kind of structured objects we are interested in is specified. Section 3
shows how HEF's for algebraic expressions can be used to represent search-
control heuristics for AD-systems. Furthermore, a concept for learning such
HEFs from examples of successful search processes is presented. Experimental
results with the AD- system SETHEO are presented in Section 4. Section 5
concludes the paper.

2. Folding Architecture Networks

The structured objects that can be handled by FAs are finite labelled ordered
trees in the following simply called labelled trees. The labels are assumed to
be real vectors of fixed uniform length. To each node a label is attached and
there are no labels for edges. The order concerns the children of a node and we
assume that there is a limit (mazimum out-degree) for the number of children.
Furthermore, each tree has exactly one root-node. Logical terms or algebraic
expressions over a finite set of symbols (signature) can easily be represented
as labelled trees by choosing the maximum arity of all symbols as maximum
out-degree and introducing a function that maps the symbols to real vectors.

FAs are a recursive variant of the standard multi-layer feed-forward net-
work. They can be used to learn approximations to mappings from labelled
trees to IR™ based on samples for these mappings. A FA is composed of two
multi-layer feed-forward networks, viz. the recursively applied encoder network
Nene and the transformation network Nipqns. Usually sigmoid activation func-
tions are considered. Ne,. is used to compute a compressed representation (a
fixed length vector) for a given labelled tree while Nypqns takes this represen-
tation as input and computes the final output of the whole network. Figure 1
shows an example of a FA which can process labelled trees with a maximum
out-degree of two. In this example both N, and Nyp.qps are single-layer feed-
forward networks. Note that in case of a maximum out-degree of one and
single-layer N¢p. and Nipqns We get a simple recurrent network.

Let Tree represent the domain of labelled trees that have to be processed
with a maximum out-degree of out,,q, € IN. Furthermore, let s;, Syep, Sout € IN
denote the dimensions of labels, compressed representations, and the network’s

final output, respectively. Then Ne,. has Str = 81 + Outyes X Srep input
neurons and Spe, output neurons. Thus, Ng,. computes a function fen. :
RS Toutmar Xsrep 3 [RSrer . Assume we have a labelled tree t = I(t1,...,t,),

where [€ IR® is the label of the root-node of t and t,,...,t, € Tree is the
ordered list of children of t. Let e denote vector concatenation. Then the
function enc : Tree — IR*er which computes the compressed representations

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 45-50

Neurons:

Neurons: St Sep * Sep b NIL NIL
§ * S * Sep A A A
AN

} [a [NIL [NIL] [g enc(b) [NIL]
Encoder Network
Encoder Network \/ unfolded

Transformation Network -
enc(f(a,g(b))
b
—— Transformation Network
Sout Neurons
=

a 9
Topology of FA-networks \ / Sout Neurons
f

Network unfolded according to f(a,g(b))
Simple labeled tree f(a,g(b))

Figure 1: Example of a FA processing the logical term f(a, g(b)).

is defined by enc(l(t1, ..., tn)) := fenc(l®enc(ty) e ... ®enc(ty) o NIL(@maz =)y,
We say the network is virtually unfolded to encode t. Leaf-nodes are encoded
first and composite trees are encoded using the representations of their children.
NIL € [R*r is a fixed representation indicating the absence of a child. The
transformation network N¢,qpns has s,ep input neurons and s, output neurons.
Thus, it computes a function fi.qns : IR°7» — IR°>*¢. By using the output of
the encoder network N,,. as the input for Ny.qns, the total network computes
a function fipans © enc: Tree — IR, See also Figure 1.

It has been shown that FAs are universal approximators for functions from
labelled trees to real vector spaces [5] and that any bottom-up tree-automaton
can be simulated by a FA [6]. FAs can be trained by back-propagation through
structure (BPTS), a recursive variant of standard back-propagation. BPTS
means that the error at the output layer of N¢..ps is propagated back through
the entire unfolded network. In this way the exact gradient with respect to
the weights in Nypqns and Ney is computed and the training is completely su-
pervised. By representing identical subtrees which occur at different positions
only once, the labelled trees of a training set can be represented very efficiently
as one minimal directed acyclic graph, and this can speed up gradient compu-
tation with BPTS considerably.

3. Learning Heuristic Evaluation Functions for
Controlling Search in Automated Deduction

Figure 2 shows a finite initial part of a search-tree generated by an A D-system
for one proof problem. Nodes and edges of such a search-tree represent states
of the AD-system and inference steps, respectively. Both, inference steps and
states are logical expressions or sets of such expressions. Proofs are represented
by states with specific properties which can be tested easily. Search-control
heuristics can be represented as HEF's which compute numeric ratings for states
or inference steps. For the following we restrict ourselves to HEF's for states and

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 45-50

- \D 7 D
préof 1- - proof 2

3 (@n)

she atatiat@or? s /1\\/ Ki .States (formulas)
AN — inference steps
P
I N\

eq(m(i(b).i(m(i(m(e.a)).a))).i(m(i(a),m(a,b))) b i a L {\)
h

N

Figure 2: Search-tree of an automated deduction system for one proof problem.

assume that these states are logical expressions?. Without loss of generality we
further assume that high ratings mean good ratings and low ratings mean bad
ones. Furthermore, a search strategy that globally compares ratings is used.
This means that state s; is explored before state s; if as;epred(s,-)vs;epred(si) :
eval(s;) > eval(s}). Here eval denotes a HEF and pred the reflexive and
transitive closure of the immediate predecessor relation in a search-tree.
Normally, there is an infinite number of possible proofs for a provable con-
jecture. The user of an AD-system is only interested in finding at least one
proof for every problem and usually does not care which proof is found. Ex-
perience with hand-crafted heuristics for A D-systems shows two properties of
good search-control heuristics. Firstly, they are usually domain-specific. Sec-
ondly, they not necessarily allow all possible proofs for provable problems of
the domain. Instead they focus on proofs with specific properties. Therefore,
heuristics should be learned for specific domains and a method for learning
heuristics should have the freedom to decide by itself on which proofs to focus.
When a finite initial part of a search-tree for a proof problem has been
explored using brute-force search or a standard heuristic and when at least one
proof has been found, a training sample for learning a HEF can be extracted
as follows. All states lying on a path to a proof (solution-path) can be used as
examples with positive target rating. All states not lying on a solution-path
could be used as examples with negative rating. However, the number of such
negative examples is usually too high. It is reasonable to restrict the negative
examples to states lying close (in the search-tree) to positive examples.
Unfortunately, standard error measures such as the quadratic error mea-
sure are not adequate for learning a HEF based on a training sample because
individual training examples are not independent of each other. Informally

2The concept for learning HEFs can easily be extended to AD-systems that have states
consisting of sets of expressions or to learning HEF's for inference steps [3].

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 45-50

speaking, a high rating for a state on a solution-path is only useful for find-
ing the respective proof if all states on this solution-path have a high rating.
However, if all states on one solution-path have a high rating it is not harmful
if some positive examples lying on other solution-paths have low ratings, since
one is only interested in finding one proof for each proof problem. Furthermore,
the number of examples in the training sample is usually small compared to
the number of states that can be explored by the AD-system in a reasonable
amount of time. Therefore, a HEF is regarded as perfect w.r.t. a sample if it
keeps search within the sample. A detailed analysis [3] leads to the following
error measure (minimization) for learning HEF's

0 if max{min{eval(s)}seci hicrpos >
max{min{eval(s)}sel}leLneg

Eleval] = {
1 otherwise

where L,s is the set of all solution-paths and Ly, the set of failure-paths.
A solution-path is the set of all nodes lying on a path from the root of the
search-tree to a proof. FEach negative example in the sample which does
not have a successor state that is a member of the sample defines a failure-
path. This failure-path contains the negative example itself and all pre-
decessor states that are not members of all solution-paths (see Figure 2).
Since a gradient-based method is used to learn HEFs (Section 2), we need
a continuous differentiable error measure. This can be achieved by using
the following approximations max{z;}ic1,. o} = %ln (L3>, e) and
min? {z;}ic 1,0} = —% In (L 37 | e79%) in Eleval]. They can be derived by
integrating the generalized sigmoid function [3]. So far Eleval] is only defined
w.r.t. a training sample coming from the search-tree of one proof problem. It
is straight-forward to combine samples from several proof problems by using
the maximum (again the approximation) of their error contributions as overall
error measure.

4. Experimental Results with the Theorem
Prover SETHEO

The error measure described in Section 3 and FAs have been used for learning
HEFs for the AD-system SETHEO. The standard version of SETHEO is one of
the best existing general purpose AD-systems [7]. The experiments on learning
HEFs have been carried out in the domain of word problems in group theory
(WPGT). 1t is of course well-known that WPGT are decidable. However, for
a general purpose system like SETHEO which in the version that was used does
not have a special equality handling® (equality plays a major role for WPGT),
WPGT can be very difficult and even intractable. For our purposes, WPGT
have two big advantages. Firstly, it is known that there are good strategies
for solving these problems. Therefore, we can be sure, that there is something

3For the experiments axiomatic equality was used.

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 45-50

to learn here. Secondly, an arbitrary number of proof problems of different
complexity are available.

In the experiments, 300 relatively simple WPGT were used for extracting
sample data and several FAs were trained*. Testing was done on 19 problems
which were intractable for the standard version of SETHEO within a time limit
of 80s on a SUN Ultra 1. SETHEO controlled by the best learned heuristic was
able to solve 17 of these test problems (time limit 80s) with an average search
time of 2.95. E-SETHEO®, a version of SETHEO with special equality handling
was also able to solve 17 problems within the time limit of 80s. However, the
average search time was 5.5s.

5. Conclusion

The experiments show that for the domain of WPGT it is possible to automati-
cally tune the general purpose system SETHEO by learning HEF's with FAs and
achieve an even better performance than the specially developed E-SETHEO.
These results are very promising. However, since word problems in group the-
ory are generally regarded as trivial the next step is to experiment in a more
realistic application domain.

The approach for learning heuristics which is presented in this paper could
be useful for learning heuristics for general search-based systems. Last but
not least the continuous differentiable approximations for the minimum and
maximum (Section 3) could be useful for other neural network applications
where training examples are not independent of each other.

References

[1] P Frasconi, M. Gori, S. Marinai, J. Sheng, , G. Soda, and A. Sperduti. Logo Recognition by
Recursive Neural Networks. In Proceedings of GREC97, pages 144-151, 1997.

[2] P. Frasconi, M. Gori, and A. Sperduti. A general framework for adaptive processing of data
structures. IEEE Transactions on Neural Networks, 9(5), September 1998.

[3] C. Goller. A Connectionist Approach for Learning Search-Control Heuristics for Automated
Deduction Systems. PhD thesis, TU Munich, Computer Science, 1997.

[4] C. Goller and A. Kiichler. Learning Task-Dependent Distributed Representations by Back-
propagation Through Structure. In Proceedings of the ICNN-96, IEEE Press, June 1996.

[5] B. Hammer and V. Sperschneider. Neural Networks can approximate Mappings on Structured
Objects. Second International Conference on Computational Intelligence and Neuroscience,

March 1997.

6

A. Kiichler. On the Correspondence between Neural Folding Architectures and Tree Automata.
Technical Report 98-06, Dept. of Neural Information Processing, Computer Science, University
of Ulm, 1998.

[7] M. Moser, O. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann, and K. Mayr. The Model
Elimination Provers SETHEO and E-SETHEO. Journal of Automated Reasoning, 1997.

[8] T. Schmitt and C. Goller. Relating Chemical Structure to Activity with the Structure Pro-
cessing Neural Folding Architecture. In Proceedings of the EANN’98, Gibraltar, June 1998.

4A part of the SETHEO-tableau was used to represent the state of SETHEO.
5The winner of the 1996 international theorem proving competition.

