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Abstract. Discriminant hidden Markov models can be generalized from
strings to labeled acyclic structures and, in particular, ordered trees [6, 7].
Inference and parameter estimation algorithms for this class of models
can be derived in a straightforward way as special instances of inference
and learning algorithms for Bayesian networks. However, if we are in-
terested in building a discriminant model, in which arrows are directed
towards the root of the tree, the model turns out to be intractable since
the number of parameters grows exponentially with the number of neigh-
bors of each node. In this paper we describe a topological transformation
that maps ordered trees into binary trees, thus making the total number
of parameters independent of the number of neighbors, as for the case
of generative models. Besides reducing complexity, it also permits to
deal with general ordered trees without imposing a priori a limit on the
maximum outdegree. We show that the topological transformation maps
regular sets of trees into regular sets of binary trees and, as a result,
it does not affect the possibility of classifying trees with a finite state
device. Finally, experimental results from a logo classification task are
shown.

1. Introduction

We are interested in the classification of structured information. Instances in
our learning domain are labeled graphs where the labels (attached to nodes)
contain the attributes (numerical or categorical) used to describe atomic pieces
of information, and the edges (not labeled) represent some sort of relationship
between the atoms [7]. Connectionist models, that can learn in these structured
domains have been recently introduced. In particular, recursive neural networks
are a generalization of recurrent neural networks for strings that can learn
about directed acyclic graphs. Hidden Markov models (HMMs) are another
important architecture for learning strings or temporal sequences. Since the
last few years, HMMSs have been seen as a special case of Bayesian network
[9]. Although mainly used within the unsupervised learning framework (i.e., as
generative models) HMMs can be easily reformulated as discriminant models
simply by reversing the direction of the arrows in the Bayesian network, and by
adding an output variable associated with the class [2]. In this paper we focus
on a generalization of discriminant HMMs for dealing with labeled trees. The
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architecture is referred to as hidden recursive model (HRM) [7, 6] and has very
close relationships to stochastic tree grammars [8]. The derivation of inference
and learning algorithms is straightforward once one is able to describe HRMs as
Bayesian networks. Given an ordered tree (such as the tree depicted in Figure
1) the model is constructed as follows. For each node v in the tree, two nodes in
the Bayesian network are introduced: a hidden state variable X, (white nodes
in the figure) and input nodes (gray nodes in the figure) associated with the
labels U,. Then an output node Y for the class is connected to the hidden state
associated with the root. When arrows are directed bottom up we obtain a
discriminant model, whose message propagation scheme is similar to a frontier-
to-root automaton [8]. The network is a model of the conditional distribution
of the class Y given the labeled tree. Reversing the arrows and removing
the output variable we would obtain a generative model of the unconditional
probability distribution over labeled trees.

Unfortunately, the discriminant model suffers two major problems. The
first one is a complexity problem: As a matter of facts, when k-ary trees are
considered, the size of the conditional probability tables in the Bayesian net-
work for the HRM grows exponentially with k. The model would be intractable
from several points of view: space, time, and parametric (degrees of freedom)
complexity.

The second problem is that £ must be chosen to be the maximum outdegree
found in the available data. Some domains (such as the logo recognition task
that we discuss later) are likely to produce trees whose average branching factor
is small, yet the maximum outdegree is relatively high. In this paper we develop
a technique for overcoming these limitations that severely limit the practical
applicability of HRMs.

There is another advantage of the proposed transformation when the au-
tomata to be inferred are characterized by sparse transition matrices (i.e., with
many don’t care conditions). In these cases the reparameterization induced by
the transformation becomes a possible way to reduce the computational power
of the HRM model working on equivalent binary trees to actual needs of the
problem at hand.

In the next section we formally define the tree transformation. In section
3 we show preliminary results on a commercial logo recognition task, demon-
strating the practical applicability of the methodology.

2. Topological transformation

Here we describe a simple technique for converting k-ary trees into binary
trees. The basic idea is to shape the graphical model using the leftmost-child-
right-sibling representation of the tree. This is achieved by removing arcs from
children to parents and by forming a right-to-left linear chain connecting sibling
state variables. In so doing, information flows through siblings and the state
variable of the rightmost child summarizes the whole information associated
with its siblings. For simplicity, we describe the transformation for trees labeled
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Figure 1: Top: an ordered tree (left) and its associated HRM (right). Bot-
tom: the same tree after applying the topological transformation (left) and its
associated HRM (right).

by categorical variables.

2.1. Definitions

Our domain is a set T of k-ary trees with nodes labeled by symbols belonging to
a finite alphabet ¥. An instance t € T is characterized by the triplet (V, E, f)
where V' and E denote the vertex set and the edge set respectively, and f is
a labeling function that maps a vertex v into a label u, € ¥. For each node
v € V let E, denote the set of edges incident from v and R, a total order
on E,. Moreover, let R, denote the position of edge (v,w). A (frontier-to-
root) tree automaton is a tuple A = (@, X, 9, F,G) where @ is a finite set of
states, F' C @ is a finite set of accepting states, G € @ is the frontier state,
and 6 : ¥ x Q% — Q is the transition function (note that the arguments of &
are filled-in with the frontier state when a node has less than k children). By
b (G, t) we indicate the state reached at the root when the automaton with state
transition § processes the tree t using G as frontier state. We also consider the
case of don’t care conditions (i.e., § is not specified for some of its arguments).
In this case, we denote by N the number of specified transitions. Clearly, in a
fully specified automaton N = || -|Q|*.

2.2. Domain transformation

Let t = (V,E, f) € T. The corresponding transformed tree (V, E’, f) is ob-
tained as follows:

E'" = {(vi,v)): (vi,vj) € E,Rij =1}
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U {(vi,v;) : Fog €V, (vg,v;) € E, (vg,v;) € E,Rp; +1 = Ri;} (1)

An example of this transformation is depicted in Figure 1.
This transformation does not affect the type of recognizer needed to classify
trees in the domain. In particular, the following results hold true [5]:

Theorem 1 For each tree automaton A = (Q,%,0,F,G) operating on k-ary
trees there exists a tree automaton A" = (Q',%,d', F,G") for binary trees such
that Q C Q' and for each t € T we have S(G, t) = 5’(G, t'), where t' is obtained
from t by applying the transformation 1.

An obvious consequence of the above theorem is that the transformation 1
maps regular sets of k-ary trees into regular sets of binary trees. Clearly, the
size of the set of states @' can significantly grow with k. It is however possible
to give a bound on |Q’| based on the number of significant transitions N [5]:

N

3. Case study: logo classification

Much attention has been paid to the problem of logo recognition working prin-
cipally with methods capable of analyzing the structure of patterns. More
recently, autoassociators have proved to be effective with Baird noise [1] and
spot noise [3]. Our approach uses the topological technique applied to the HRM
hybrid system to drastically reduce the spatial resources employed. The images
are in the PNM format (Portable AnyMap) with 256 gray levels of dimension
from 15 KByte to 160 Kbyte. All the logos come from the database built by
the Document Processing Group, Center for Automation Research, University
of Maryland. In the data set are pure text logos, pure graphic logos and mixed
text-graphic logos.

To simulate the case of images obtained from photocopying or fax machines
it has been added noise. The types of simulated noise are: stripe type (black
rectangles), blob type (black circles), impulsive type (the color value of a pixel
is changed with a defined probability) and rotational type (the logo is being
rotated randomly by an angle in a specified range to simulate the practical
impossibility of an exact positioning of the image to recognize). Other noise
sources such as scaling, mirroring, smoothing, and smearing have not been
considered in this study.

The algorithm used to extract a labeled graph from the image is a variant
of the well known contour-tree [4]. The algorithm applies the following steps:

e the root of the tree is a contour that contains all other contours, if it
exists, or the entire scene otherwise;

e 4 different contour corresponds to a different node of the tree ;

e a contour surrounded for more than 270 degrees by another contour is
represented as a child node of the latter.
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Figure 2: Example of a logo after all considered types of noise have been

applied.

Table 1: Experimental results

Max stripe height 100 % Max num. contiguous blobs 40
Max stripe width 30 % Max dimension blob 10 %
Impulsive noise 8 % Impulsive noise 8 %
Max rotation + 60 Max rotation + 30
Num. Hidden units 6 Num. Hidden units 12
State variable cardinality 12 State variable cardinality 12
Training set accuracy 89 % Training set accuracy 89 %
Test set accuracy 88 % Test set accuracy 88 %
Max stripe height 100 %

Max stripe width 30 %

Impulsive noise 8 % Max stripe height 100 %
Max rotation + 180 Max stripe width 30 %
Num. Hidden units 12 Num. Hidden units 12
State variable cardinality 12 State variable cardinality 12
Training set accuracy 90 % Training set accuracy 98 %
Test set accuracy 88 % Test set accuracy 98 %

The number of features extracted from each contour is 11 among which the
area of the contour, the perimeter of the contour, the distance between the
baricenter of the image of the whole image and that of the contour, the maxi-
mum curvature ray for convex and concave vertex, the number of concave and

convex vertexes, etc.

For the experiment more than one type of noise has been added to the im-
ages varying the parameters in a random way within specified ranges obtaining
4096 elements (1024 for each class) half of which are used for training and
half for test. The maximum dimensions for the stripes are normalized to the
maximum dimension of the rectangle that contains the whole image.
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4. Conclusions

We have introduced a novel way of learning general k-ary trees. The topological
transformation we have defined can significantly reduce the model complexity
thus enabling the use of a discriminant Markovian approach that would be oth-
erwise intractable. Our theoretical analyses indicate that good results should
be expected whenever the grammar underlying the data is simple enough in
terms of number of production rules. Clearly, productions in the transformed
domain may be more complex and thus harder to learn. However, in our pre-
liminary experiments on a real world task we have achieved a good classification
performance while taking advantage of the complexity reduction offered by the
proposed transformation.
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