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Abstract

By and large, learning from examples in the machine learning litera-
ture refers to static data types. That main stream of interest, however,
has had signi�cant bifurcations (see e.g. the learning issues connected
with syntactic and structured pattern recognition) arisen from the need
to exploit the structure inherently attached to the data of some learning
tasks.

In this paper, I review brie
y the research carried out in the last few
years in the area of connectionist models in the attempt to extend the
corresponding learning approaches to the case of structured domain. I
give a uni�ed picture of the adaptive computation which can be carried
out on graphical objects and show that, under certain restrictions on
the kind of graph to be processed, the classic learning algorithm for
feedforward networks can be straightforwardly extended.

1 Introduction

Most interesting intelligent information processing tasks are based on the pres-
ence of some form of structure that, however, cannot easily be grasped at a
symbolic level. The data associated with interesting real-world problems is of-
ten inherently structured. On the other hand, the truly sub-symbolic nature
of many of those problems makes it very hard to extract clean structured sym-
bolic data. The way humans process this kind of information can be regarded
neither as strictly symbolic nor subsymbolic, neither sequential nor parallel,
but is in fact a sort of magic mixture of all of these. Not only is the human
brain a complex graph of elementary units, but data to be processed can often
be regarded as complex structures of elementary units themselves.

Most symbolic and sub-symbolic models of learning, including neural net-
works, are conceived for processing static data types. The learning of sequential
information is the �rst step toward the adaptive computation of dynamic data
types. Recurrent neural networks were conceived so as to exhibit a dynamic
behavior for incorporating time and, more recently, they have been extended
to the processing of structured information. In this paper, I give a general
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framework for adaptive computation of structured information 1 and focuses
attention on connectionist models presenting either architecture or learning is-
sues. This formulation extends recurrent neural networks signi�cantly 2 and
makes it possible to conceive graphical models with neuronal units which pro-
cess data represented by graphs themselves.

2 Links with the related research

The need for structured representations in the �eld of pattern recognition was
early stimulated by Norber Wiener who proposed the concept of pattern as an
arrangement characterized by the order of the elements of which it is made,

rather than by the intrinsic nature of these elements. The development of
the theory of formal languages, which can be traced to the middle 1950s by
Noam Chomsky, was the main catalyst of the research in the �eld of syntactical
pattern recognition, where the role of the structure in the patterns was partic-
ularly stressed. Whereas the approaches to syntactic pattern recognition are
well-suited for taking the structure of the pattern into account, most adaptive
pattern recognition techniques seem to face e�ectively the sub-symbolic nature
of patterns, but can hardly be regarded as appropriate models for processing
structured information.

For sequence, or lists, special connectionist models referred to as recur-
rent neural networks have been proposed either for representational or learning
issues. The interest in dynamical recurrent networks can be traced back to ear-
liest work by McCulloch and Pitts. The authors had already incorporated the
time dimension into neural networks that, however, were based on thresholding
non-linearities. A nice interpretation of dynamic neural networks for processing
temporal information is that of reducing the network to a static architecture
by time-unfolding. The ideas of time-unfolding and Backpropagation through
time has originated the concept of encoding network which will be reviewed
in this paper. In the literature, the recurrent neural networks for processing
sequences have been massively investigated in the last few years in a number of
di�erent �elds, like speech recognition, natural language processing, time series
forecasting, and automatic control (see e.g. [3, 4]).

The diÆculties related to the representation of complex structures into con-
nectionist models were early mentioned by Hinton in its preface to the \Special
Issue on Connectionist Symbol Processing [5]. He pointed out that one of the
basic problems is to devise e�ective ways of representing complex structures
without sacri�cing the ability to learn.

The recursive auto-associative memories (RAAM) are one step further the
representation and the learning of sequences. They were proposed as a model
for processing trees with labels attached only to the leaves [6]. In that paper,
Pollack seems to address some of Fodor & Phylyshyn's [1] main arguments
against connectionism, by pointing out that the RAAM is a connectionist ar-

1A more comprehensive treatment of the topic can be found in [2].
2In this paper, recurrent networks will be also referred to as recursive networks.
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Figure 1: The generalization of recurrent neural networks to the processing of structured

information. For instance, in the case of binary trees the state associated with a given node

v depends on the attached label Uv and on the states Xv;L and Xv;R of its children.

chitecture which is capable of discovering compact representations for compo-
sitional symbolic structures. A remarkable extension of RAAM for considering
labelled graphs was proposed in [7].

3 Recursive networks for processing DOAG's

Let us consider a directed ordered graph so as for any node v one can identify a
set, eventually empty, of ordered children ch[v]. For each node we can consider
the following state equations

Xv = f
�
Xch[v];Uv ; v;�

f
v

�
Y v = g (Xv ; v;�

g
v) :

(1)

The rationale behind this model is well illustrated in Figure 1 for the case of
binary trees. The state associated with each node is calculated as a function
of the attached label and of the states associated with the left and right chil-
dren, respectively. The operators q�1

L and q�1
R make it possible to address the

information associated with the left and right children of a given node and,
therefore, generalize straightforwardly the temporal delay operator q�1. Of
course, for any node, the children must be ordered so as to be able to produce
di�erent outputs for binary trees fr; L;Rg and fr; R; Lg. Lists are just a special
case of binary tree in which one of the children is null.
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Figure 2: Construction of the encoding network corresponding to a recursive network and

a DOAG. Note that o = 3 (graph outdegree), and that the nil pointers are represented by

proper frontier (initial) states.

From the encoding network depicted in Figure 2 we can see a pictorial
representation of the computation taking place in the recursive neural network.
Each nil pointer is associated with a frontier state X̂v, which is in fact an
initial state that turns out to be useful to terminate the recursive equation.
The graph plays its own role in the computation process either because of the
information attached to its nodes or for its topology. A formal description of
the computation of the input graph requires sorting the nodes, so as to de�ne
for which nodes the state can be computed �rst. In the literature, this problem
is referred to as topological sorting.

4 Connectionist architectures for recursive net-

works

The graphical models presented in the previous section emphasize the structure
of independence of some variables in the state-based model of equation 1. For
instance, a classic structure of independence arises when the connections of any
two state variables Xv and Xw only take place between components Xi;v and
Xw;i with the same index i. In the case of lists, and consequently of sequences,
this assumption means that only local-feedback connections are permitted for
the state variables. The information attached to the recursive network, how-
ever, needs to be integrated with a speci�c choice of functions f and g which
must be suitable for learning the parameters. Let o be the maximum outdegree
of the given directed graph. The dependence of the node v on its children ch[v]
can be expressed by pointer matrices Av(k) 2 Rn;n; k = 1; : : : o: Likewise,
the information attached to the nodes can be propagated by weight matrix
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Figure 3: A typical example of non-stationarity: DOAG's with a remarkably di�erent

outdegree. For instance, one can divide the examples into three classes (small, medium,

large outdegree) and use di�erent recursive neural networks for each class.

Bv 2 Rn;m. Hence, the �rst-order connectionist assumption yields

Xv = �

 
oX

k=1

Av(k) � q
�1
k Xv +Bv �Uv

!
: (2)

Like for list processing (recurrent nets processing sequences) the output can be
computed by means of Y v = �(C �Xv). In practice, especially when dealing
with graphs having high outdegree, given any node v, the state associated with
its corresponding k-th child q�1

k Xv can be conveniently compressed before
feeding the neuron outputs. Hence, the state updating equation (2) becomes

Xv = �

 
oX

k=1

Ak � q
�1
k � (P v �Xv) +Bv �U v

!
: (3)

where P v 2 Rnr;n reduces the dimension n of the pointer information from n

to nr < n.
Like for multilayer perceptrons operating on static data types, the learn-

ing process is carried out by optimizing the attached error function. Note that
the optimization takes place by considering all the encoding neural networks by
weight sharing, that is the matrices attached to the mmodes are the same for all
the nodes of the graphs. The gradient computation is carried out by Backprop-
agation. Because of the graphical structure inherited by the encoding networks
the algorithm for the gradient computation is referred to as Backpropagation
through structure.
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5 Conclusions

The extension of recurrent neural networks to the domain of directed ordered
graphs reviewed in this paper is motivated by the impressive number of di�erent
application domains in which structured data seems to be more appropriate. A
number of problems are still open. For instance, the elegant extension of Back-
propagation through time to the case of DOAG's does not apply to more general
types of graphs and the weight sharing mechanism might not be appropriate
in most interesting real-world problems in which huge graphs are involved. In
principle, in that case one can use the approach sketched in Figure 3, where
di�erent modules are in charge for processing di�erent nodes.

Finally, most of the studies reviewed in paper deals with supervised learning,
even though many interesting real-world problems (see e.g. iconic retrieval in
image data bases) would require strong unsupervised learning capabilities of
graphic objects.
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