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Abstract. We study avalanches of spike activity in fully connected net-

works of integrate-and-�re neurons which receive purely random input.

In contrast to the self-organized critical avalanche behavior in sandpile

models, critical and non-critical behavior is found depending on the in-

teraction strength. Avalanche behavior can be readily understood by

using combinatorial arguments in phase space.

1. Introduction

The dynamics of networks of interacting threshold elements have focused much
attention in the last years. Single elements are characterized by an internal
variable, U , which accumulates as the element receives external or internal
input. Upon reaching a threshold, Umax, the element interacts with other
members of the network, and U is reset. Phenomena arising in such networks
range from partial and total sychronization and desynchronization (e. g. [8, 5,
9]) to self-organized criticality (SOC; e. g. [1, 7, 10, 11]).

Self-organized criticality was introduced by Bak et al. [1, 2] in the context of
cellular automata { �nite-state systems with nearest-neighbor coupling { which
are driven by random input (sandpile model). The size and temporal duration
of avalanches of activity in such systems have power-law distributions. SOC
has recently been characterized by an in�nite separation of the time scales of
external driving (which is slow) and avalanche dynamics (which is fast) [11].
Feder and Feder [7] and Olami et al. [10] studied the avalanche behavior of a
di�erent type of systems exhibiting SOC, the so-called stick-slip models which
are nonconservative cellular automata with a uniform instead of a random
driving. The collective behavior of integrate-and-�re neural networks with
di�erent topologies has been intensively investigated under various conditions
(e. g., [8, 4, 3, 5, 9]). In these models, the external input is usually assumed
to be uniform, and the system is studied with respect to the question under
which conditions synchronized and desynchronized states occur.
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In the present study we focus attention on avalanches in randomly driven
systems with an in�nite separation of time scales. Instead of a nearest-neighbor
coupling as in cellular automata, however, we consider networks of integrate-
and-�re neurons with global coupling. Compared to the sandpile model [1, 2],
additional parameters are introduced: the size of the synaptic weights and the
size of the external input. Accordingly, a behavior richer than pure SOC can
be expected.

2. Model

Time is measured in discrete steps, t = 0; 1; 2; : : : The network consists of
N identical perfect integrate-and-�re neurons with uniform all-to-all coupling.
The state of each neuron is described by the membrane potential, U 2 [0;Umax[,
where Umax is the �ring threshold. For the i-th neuron (i = 1; : : : ; N), the
dynamics are governed by the equation

Ui(t+ 1) = (Ui(t) + I inti (t) + Iexti (t)) mod Umax ; (1)

where I inti (t) represents the internal and Iexti (t) the external input at time
t. Equation (1) corresponds to a fast relaxation of the membrane potential
after having reached the threshold such that the excess input, Ui(t) + I inti (t) +
Iexti (t)�Umax, is accumulated after the reset [9]. The internal input is given by
I inti (t) =M(t�1)�=N , whereM(t�1) is the number of neurons having �red at
time t�1, and �=N is the synaptic weight. We assume � � 0 (excitatory input)
and � < Umax for simplicity. For the external input, one neuron is randomly
chosen from the network according to a uniform distribution, and a constant
0 � �U � Umax is added to its potential. The external input is considered to be
delivered slowly compared to the internal network dynamics, i. e., it occurs only
after neural �ring has ceased. This can be written as Iexti (t) = �ri �M(t�1)0�U ,
where r is an integer random variable between 1 and N .

At some time t0 an avalanche starts if the neuron receiving external in-
put �res, i.e., M(t0) = 1. During the avalanche, there is no external input.
Spikes are transmitted to all neurons (including the neurons which have �red).
The stopping condition for an avalanche is M(t0 + tL) = 0, where tL is de-
�ned to be the avalanche duration. The avalanche size, L, is de�ned to be
L =

PtL�1
k=0 M(t0 + k) and the relative avalanche size is l = L=N . Avalanche

distributions are described either by a function p(l) where
P

l�1=N p(l) = 1, or

by a function P (L) where
P

L�0 P (L) = 1. Both measures are related to each
other via p(L=N) = P (L)=(1� P (0)).

3. Results

Figure 1 shows double-logarithmic plots of avalanche distributions, p(l), for
di�erent values of the coupling strength � while N and �U are held �xed.
In general, four qualitatively di�erent avalanche behaviors exist which will be
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Figure 1: Distributions of avalanche sizes, p(l), in the subcritical (a; � = 0:503),
critical (b; � = 0:874), supercritical (c; � = 0:977) and hypercritical (d; � =
0:997) regime. Solid lines: numerical results. Dashed lines in a){c): Analytical
results. In all cases, N = 100, �U = 0:022, Umax = 1. Temporal average over
107 avalanches.

called subcritical, critical, supercritical and hypercritical, respectively. Fig-
ure 1a shows an example of the subcritical case. The curve is monotonically
decreasing and concave down. Typically, the probability of global avalanches
comprising a high percentage of neurons in the network is so low that they are
not found numerically. As � is increased, the critical case is eventually reached
(Fig. 1b). The critical regime was found numerically to satisfy approximately
�(N) = 1 �N�0:45. Avalanche distributions show power-law behavior which
holds from L = 1 almost up to L = N + 1. Deviations result from the �nite
size of the network. Numerical calculations yield p(l) � l�1:45 independent of
N and �U . Above the critical value of �, avalanche size distributions become
nonmonotonic (Fig. 1c). The supercritical curves have a minimum at some
intermediate avalanche size: large avalanches are more probable than medium-
sized ones. This phenomenon could be termed \stochastic synchronicity": the
system tends to show outbreaks of high activity comprising the �ring of a ma-
jority of elements. Finally, for values of � close to Umax, neurons can �re more
than once during an avalanche leading to distributions which have multiple
peaks for values l = 1; 2; 3; : : : Figure 1d shows an example with four peaks. A
simple geometric argument revals that avalanches of size L = N + 1 can only
occur if �+�U > Umax. For the existence of k peaks in the avalanche distri-
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bution, the condition � > (kNUmax)=(kN + 1) has to be satis�ed in addition
[6].

In the following, we use combinatorial arguments in phase space to derive
expressions for avalanche distributions. The phase space of the system is given
by the Cartesian product � = IN0 � � where the �rst factor describes the
temporal dimension, and � = [0;Umax[

N is the space of the neurons' membrane
potentials.

First consider the case N = 2 which demonstrates the basic mechanisms for
evaluating the avalanche dynamics. The avalanche distribution is calculated by
determining the equilibrium density of states in �, �(U1; U2), and subsequently
considering the subspaces which lead to avalanches of sizes 0; 1, and 2. Figure
2a shows the subspace � and the e�ects of external input, internal input, and an
avalanche of size L = 1. In the latter case, the system leaves � and is reinjected
on the opposite side. Considering the long time scale between avalanches, it is
straightforward to see that systems will never be reinjected into the subspace
denoted as A, i.e., �(U1; U2) = 0 for (U1; U2) 2 A. The density in � n A is
solely determined by the external input the random nature of which results in
a random walk along the second diagonal while the system makes deterministic
steps of size

p
2�U along the �rst diagonal. As a result, the density is constant

in �nA, and a normalization yields the value �(U1; U2) = (U2
max��Umax)

�1 in
�nA. Figure 2b identi�es those regions in phase space which lead to avalanches
of size 0 (B), 1 (C), and 2 (D) following external input to neuron 1. Avalanche
probabilities are obtained by integrating �(U1; U2) over the respective region.
The result is P (L = 1) = �U=Umax; P (L = 2) = ��U=(2U2

max � �Umax).

Figure 2: The dynamics in the subspace � for N = 2. (a) E�ects of an external
input to neuron 1 (arrow marked as �U), internal input (arrow marked as
�=2), and an avalanche of size 1 (arrows marked as L = 1). A denotes the
subspace where the density of states eventually vanishes. (b) B;C;D denote
subspaces leading to avalanches of size L = 0; 1; 2, respectively, if triggered by
an external input to neuron 1.

Similar arguments hold for the general situation of N neurons; the topology

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 411-416



of the subspace A and the subspaces leading to avalanches of certain sizes,
however, are more complicated. An analytical expression can be obtained for
� �! 0 which allows the use of a combinatorial argument in � instead of � nA.
For this purpose, the set of membrane potentials of a neuron, [0;Umax[, is
divided into intervals Ii where Ii � [Umax�i �N ;Umax�(i�1) �N [ (i = 1; : : : ; N).
Furthermore, let I0 � [Umax��U ;Umax[ and Vol(L;N;�) = P (L) denote the
volume of the subspace containing all regions which result in avalanches of size
L. For L = 0, no membrane potential must be closer to the threshold than
�U . The corresponding volume in � is Vol(0;N;�) = (Umax � �U)UN�1

max .
For avalanches of size L � 1, neuron 1 which receives external input �res.1 For
L = 1, it is required that neuron 1 be in I0 while no other neuron must be in I1.

This yields a volume Vol(1;N;�) = �U
�
Umax � �

N

�N�1
. Phase space volumes

for larger avalanches are calculated accordingly; for L � 3, however, two facts
have to be taken into account: First, two or more neurons in the same interval
Ii are indistinguishable. Second, there are several con�gurations leading to the
same avalanche size [6]. A tedius calculation of the cases L = 1; : : : ; 10 suggests
the general formula

Vol(L;N;�) = C(N;L)�U
� �
N

�L�1�
Umax � L�

N

�N�L

; (2)

where

C(N;L) =
LL�2

(L� 1)!

(N � 1)!

(N � L)!
= LL�2

�
N � 1

L� 1

�
: (3)

The dashed lines in Fig. 1a{c show p(l) as evaluated by (2) and (3). In the
subcritical case, the approximation yields very good results even if � is not
close to zero. The critical case shows a quantitative agreement of numerical
and analytical calculations for small avalanche sizes. Especially, the power-law
behavior is obtained from the approximation. In the supercritical case, the
nonmonotonic character of the distribution is recovered. This is true although
� is close to one rather than close to zero.

4. Summary and Discussion

We studied the avalanche behavior in fully connected networks of perfect inte-
grate-and-�re neurons with random input. Depending on the strength of inter-
action between the neurons, �, four qualitative di�erent avalanche distributions
were obtained which we termed subcritical, critical, supercritical, and hyper-
critical.

The avalanche behavior of the fully connected network di�ers from the
avalanche behavior of the classical sandpile model [1, 2] with respect to two
properties. First, in our model, the regimes of the four di�erent types of
avalanche distributions depend on N while the avalanche distribution of the

1More speci�cally, all N neurons are considered and yield identical results; these are

weighted by the probability, 1=N , of choosing the respective neuron.
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sandpile model is independent of the size of the system. This is due to the
di�erent network topologies: in the sandpile model, each neuron is connected
to a �xed number of neighbors irrespective of the system size. In the fully
connected network, however, each neuron receives input from O(N) neurons
which alters the statistical properties as a function of N . In fact, the critical,
supercritial and hypercritical behaviors live on the statistical 
uctuations of
the distribution of membrane potentials which are most prominent for small
numbers of neurons. Second, in the fully connected network, the critical state
which is characterized by a power-law distribution of avalanche sizes requires
a �ne-tuning of the coupling constant in addition to the in�nite separation of
the time scales of external driving and avalanche dynamics employed in the
sandpile model [1, 2, 11]. In this sense, our system is more general than the
sandpile model in that we introduced additional parameters part of which then
have to be tuned to certain values in order to obtain self-similar behavior.

Extensions of the current model include the consideration of various network
topologies such as a two-dimensional array of neurons whose coupling constants
fall o� with distance, and the study of the transition from perfect integrate-
and-�re neurons to leaky integrators. In the latter project, the prerequisite of
the in�nite separation of time scales has to be dropped. Both extensions aim
at greater biological plausibility in order to assess the question if avalanche
phenomena arise in the brain, e.g., in neocortical structures with its di�use
thalamic and reticular input.
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