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Abstract. The prediction of switching dynamical systems requires an
identification of each individual dynamics and an early detection of mode
changes. Here we present a unified framework of a mixtures of experts
architecture and a generalized hidden Markov model (HMM) with a state
space dependent transition matrix. The specialization of the experts in
the dynamical regimes and the adaptation of the switching probabilities
is performed simultaneously during the training procedure. We show
that our method allows for a fast on—line detection of mode changes in
cases where the most recent input data together with the last dynamical
mode contain sufficient information to indicate a dynamical change.

1. Introduction

Non-stationarity is a severe problem in classification and prediction of dynam-
ical systems. A framework for dealing with non—stationarity is the mixtures of
experts architecture, introduced by Jacobs et al. [3]. The mixtures of experts
framework aims at separating the seemingly complex global behaviour into a
couple of lower dimensional sub—dynamics which can be modeled more easily.
One central problem of using a set of experts is the calculation of the activities
of each expert depending on the past — called the gating problem.

Many solutions have been proposed for dealing with the gating problem [1, 2, 3,
4, 7,9, 10]. In its original formulation [3], the mixtures of experts method can
be applied to systems, where different regimes do not overlap in phase space
(i.e. the input space). The expert activities are provided by a feed—forward
gating network given the current location in phase space [3, 10]. The use of
a recurrent gating network [2] allows to distinguish also between overlapping
regimes.
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An alternative, non—recurrent approach to distinguish between overlapping
regimes is the annealed competition of experts (ACE) method [7]. It has
its roots in statistical mechanics and is a purely performance—driven concept,
which considers a moving average prediction error for estimating the activities
instead of using a gating network.

In contrast to these well-known approaches, we use the concept of hidden
Markov models (HMM) and associate each prediction expert with a hidden
state of the system. Moreover, we introduce a non-linear gating network that
models the conditional probabilities of transitions between the predictors de-
pending on the actual location in phase space and the previous prediction
performance. Hence, this approach unifies previous approaches by integrating
(1) input information, (2) performance information, and (3) state information
for modeling the gating probabilities. It is therefore also substantially more
general than related HMM based methods [1, 9], which either do not make use
of performance information [1] or do not use input information [9] in the gating
process.

Simulation results show that mode changes can be detected much earlier, if
all the three types of information are incorporated into the gating process.
Likewise, the prediction performance can be improved significantly.

2. Algorithm

The concept of a generalized hidden Markov gating consists of the following
three information processing components:

1. Experts: Consider a set of K models {f*}X | which can be linear or
non-linear depending on the prior knowledge about the data. At time step
t, 1 <t < T, each expert provides a prediction yf = f*(Z;,a*) which might
be e.g. the estimate of a future value y; = x4, of a time series {z;} given a
vector of past values ¥y = (x¢,Z¢—r,...,T¢—(4—1)r). The parameter d is called
the embedding dimension and 7 is called the delay parameter. Note that the
extension to multivariate time series is straightforward.

The parameter vector of each model is denoted by @*, the combined parameter
vector of the experts is @ = (@',...,a%). Under a Gaussian assumption, the
probability density r4 that a particular predictor £ would have produced the
data y;, is given by

ra(yelk) ~exp (—Bef)  with e = (y: — yf)2 . (1)

The parameter 8 can be interpreted as an inverse-temperature and is used for
deterministic annealing during the training process.

By using Bayes’ theorem this leads to the probability r¥ that expert k has
generated a given observation y;:

r¥ = r(kly:) = exp (—Bef) /leil exp (—f¢}) (2)

2. Mixing: The joint prediction y; of the ensemble is given by a weighted sum
of the individual outputs. Then, the probability distribution pg for observing



ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 405-410

y; follows straightforward under the Gaussian assumption:

K
vi =Y atyt  paly@, @) = \/geXp (—ﬁ (g1 — yZ)2) (3)
k=1

3. Gating: The mixing factors ¢f are called the activations of each expert.
They are calculated in the generalized hidden Markov gating process. In order
to understand how this calculation is performed, we have to consider an HMM,
which consists of (cf. [8]):

(a) a set S = {s*} of states, where each state is represented by a prediction
expert f¥,

(b) a matrix A(#) = {aflk’} of state transition probabilities, which, in our
case, depend on the actual location Z; in the phase space,

(c) an observation probability distribution pg(y:|s*) = rq(y:|k),

(d) an initial state distribution 7 = {7*}, which is assumed to be equally
distributed.

The activation ¢f is given by the a priori probability of being in state k at time

t, which depends on the input—dependent transition probabilities af K" and the
a posteriori state probabilities pf , from the previous time step:

k - kK" k' k riqf

e _ Z : ; _ t
qy = Ay Piq with Dy = Kill
k=1 D=1 ekt

The posterior probabilities can be identified with the scaled forward probabil-
ities & in the tutorial of Rabiner [8]. They contain information about the
target value y;, whereas the prior probabilities do not.

The transition matrix is represented by an input—dependent gating network! h

(4)

with a (K x K)—output matrix and a parameter vector a9: af‘kl = hHIF (7, @9).
The training of experts is performed by a gradient descent on the free energy F
(which is equivalent to Maximum Likelihood learning) and the gating model is
optimized by using the Kullback—Leibler divergence (KL) between the posterior
and prior probability distributions:

T K
1 1 pk
——log]] 2 KL==——3"3 pllogt

F = qk
t=1 k=1 t

Both quantities can also be combined into one quality—function. In order to
calculate the gradients of eq. (5), we use the method of Lagrange multipli-
ers for incorporating the normalization conditions of the probabilities and the
transition matrix. The training can efficiently be performed by Expectation—
Maximization (EM). The E-step consists of estimating the probabilities, the
M-step adapts the models by minimizing the objective functions using gradient
descent.

I'We use a radial basis function (RBF) network of the Moody-Darken type [6] for the
gating network.
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3. Simulations

3.1. Deterministically switching logistic map

The first example consists of a switching system of a noisy logistic map, y;4+1 =
Tep1 = 4y (1 — z¢) + 1y, and its “inverse”, y!, | =z, =1 —4a{(1 —a]) +nq,
with uniform noise n; € [-0.01,0.01]. The dynamics jumps from one mode to
the other whenever z; € [0.45,0.55] holds. This is a system which exhibits non—
linear behaviour, totally overlapping input spaces and a transition probability
depending on the location of the dynamics. Additionally, the mean length of
a mode is about only 16 time steps and therefore relatively short compared
to previous applications of gated prediction systems. Modeling the jump pro-
cesses is therefore very important for obtaining a high prediction quality. For
the experts we use two radial basis function networks of Moody—Darken type
[6] with 6 centers each, and one network of the same type but with 10 centers
as the gating model.

In table 1 the performance of our method is shown compared with the ACE-
algorithm [7], which uses a lowpass filter instead of modeling transition prob-
abilities. The advantage of the HMM-based method is first a fast detection of
change points, because it does not depend on a fixed smoothing algorithm. Sec-
ond, the method allows a succesive iteration of the prediction system with the
possibility of showing a self-driven mode change. Both properties are shown
in Fig. 1.

3.2. Lorenz—System

The second example is the Lorenz system [5], which is given by a set of three
coupled differential equations. With the chosen parameters the Lorenz system?
exhibits a switching behaviour between oscillations around two fix—points. The
system is globally non-linear, with the strongest non—linearity near the switch-

2The following parameters are used: o = 16, b = 4 and r = 45.92.

system algorithm | training | test 1 | test 2
switching logistic map HMM 0.00609 | 0.0125 | 0.0110
ACE 0.00452 | 0.404 | 0.537

Tac = 3 Te =2
Lorenz system HMM 0.0270 | 0.0282 | 0.0279
ACE 0.0287 | 0.0397 | 0.0381

Tac =9 Te =29

Table 1: Comparison of normalized mean squared errors. Note that the filter
used in the ACE-algorithm is acausal on the training data (7,.) while it is
causal on the test data (7.).
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Figure 1: Hidden Markov gating of the logistic map example: a) Re-
presentation of the input dependent 2 x 2—output—matrix of the gating
model. Each plot shows the one element of the transition probability
matrix for changing or keeping the dynamical mode. b) One-step and
iterated prediction of the time series by a gated hidden Markov mixture
of non-linear predictors. Upper line: Until time step 2000 the one—step
forecasts are shown, the remaining 100 time steps of the signal have been
generated by iterated prediction. Lower line: The predicted allocation
probabilities of one sub—dynamic. Note that the iterated prediction for
t > 2000 includes the forecast of transitions among the modes.

ing area from one oscillatory wing to the other, while each single oscillation
can be assumed to be approximately linear near the corresponding fix—point.
Therefore, we choose two linear experts and a non-linear gating network for
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modeling the Lorenz system. The non-linearity is thus incorporated in the
gating procedure. The input and output of the experts are given by the state
vector (X,Y, Z).

As shown in table 1, our algorithm yields significantly better predictions than
ACE.

4. Conclusion

We presented a generalized framework for unsupervised segmentation, identi-
fication, and prediction of switching dynamics. The architecture is based on
a hidden Markov model with an input-dependent state transition matrix. It
consists of competing prediction experts and a gating network that, in contrast
to existing methods, makes use of all available sources of information: input
information from phase space, prediction error information, and HMM state
information (memory). In particular, this allows for a fast detection of change
points in on—line scenarios. Thereby, it can improve the prediction performance
significantly. We expect that the method will be useful for the prediction of a
wide range of natural signals, as e.g. climatologic or financial data.
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