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Abstract. Receptive �elds in V1 have been shown to be wider during
synchronized than during non-synchronized EEG states, where, in ad-
dition, they can shrink over time in response to 
ashed stimuli. In the
present paper we employ a neural �eld approach to describe the activity
patterns in V1 analytically. Expressions for spatio-temporal receptive
�elds are derived and �tted to experimental data. The model supports
the idea that the observed RF-restructuring is mainly driven by state-
dependent LGN �ring patterns (burst vs. tonic mode).

1. Introduction

Receptive �eld sizes in the primary visual cortex (V1) have recently been shown
to depend on the state of the EEG [8]. In synchronized states (dominated by ��
or ��waves) they are signi�cantly wider than in less or non-synchronized states
(��EEG). In addition, in non-synchronized states their width can considerably
shrink over time in response to 
ashed light spots (cf. Fig.1C and [8]). Di�erent
�ring patterns of LGN during di�erent EEG states have been suggested as
the main mechanism for this restructuring [8]. During synchronized EEG,
LGN cells respond to visual stimuli mainly with a contrast independent phasic
burst of spikes at high frequency (Fig.1A). These bursts are strong enough to
drive cortical cells also further away from the main projection column, whereby
they evoke wide receptive �elds. In contrast, during non-synchronized states,
the burst component is often diminished. Instead, LGN cells respond with
a long-lasting tonic �ring pattern at much lower (and contrast dependent)
rates (Fig.1B). Accordingly, one expects a transient and relatively broad initial
receptive �eld (due to the burst) which sharpens quickly (due to the tonic
component) just as observed experimentally (Fig.1C).
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Fig.1: A,B: Peri-stimulus-time histograms of visual responses of a dLGN relay
cell during di�erent EEG states in an anesthetized cat. Note that in both EEG
states, the neural response starts with bursting. Parts (5 s) from EEG-traces
are shown in the insets. C: Shrinking of receptive �eld width of cortical cell with
latency after stimulation. The total number of spikes is grey-scale coded (0-40 I/s).

The above hypothesis has been tested by means of biologically detailed
computer simulations [8]. The present paper takes a more abstract level of
description in form of neural �eld equations [1, 5, 7]. Those enable an ana-
lytical derivation of the spatio-temporal cortical activity. Moreover, cortical
parameter sets can be obtained by �tting the model to experimental data.

2. Theory

The cortical layer V1 is idealized by a one-dimensional array of cells [1, 4, 5,
7]. V1 receives input from LGN whereas lateral and feedback connections are
neglected. Those had been implemented in our earlier large scale simulations
[8], but their in
uence was not essential for the main mechanisms of state-
dependent receptive �eld sharpening. Therefore, the neural activity in V1, �,
can be written as a spatio-temporal convolution with the LGN input, I(x; t):

�(x; t) =

Z t

0

Z 1

�1

g(t� t0)K(x� x0)I(x0; t0)dx0dt0 : (1)

The kernel g(t) in (1) describes the cortical temporal response function and
K(x) the feedforward projections from LGN to cortex. We choose

g(t) =
1

�
e�t=� and K(x) =

K0p
2�

e
� x

2

2�2
0 : (2)

Thus, the temporal cortical dynamics is assumed to follow a �rst order low pass
dynamics with empricical time-constant � . In assuming a Gaussian connectiv-
ity pro�le for K(x) we restrict our considerations to single on- or o�-sub�elds.
Receptive �elds consisting of several sub�elds can be modeled by superposi-
tions of several responses of the form (1) with appropriate g and K. The factor
K0=

p
2� in (2) plays the role of an e�ective synaptic strength.
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In a �rst approximation, we assume that the input from LGN to V1 is sepa-
rable in space and time: I(x; t) = Ix(x)It(t) (cf.[3, 5]). Experimental stimuli in
[8] are small light spots. Those evoke localized activity pro�les in the LGN rep-

resented by a Gaussian function Ix(x) = exp(� x2

2�21
). The temporal component

It(t) of the LGN activity is modeled by phenomenological activity functions
(3) and (4), which already contain the state-dependence and approximate the
experimentally observed LGN �ring patterns (Fig. 1):

Ist(t) = c1�(t)�(t1 � t) (3)

Inst(t) = Ist(t) + c2�(t� t1)�(t2 � t) : (4)

�(t) is the Heaviside function. Ist(t) describes the high-frequency burst of
spikes in the synchronized EEG in form of a rectangular pulse of strength c1
lasting from t = 0 to t1. The bursts are due to intrinsic LGN membrane
properties (low-threshold Ca-bursts) and the interplay with inhibitory PGN
neurons, modelled in more detail in [8]. Inst(t) contains the additional tonic
component of height c2 < c1 lasting from t1 to t2.

We are now ready to compute the cortical spatio-temporal activity pro�le
�(x; t). Because we assumed stimulation by small light spots, this pro�le can
be interpreted as the cortical point spread function or, in light of the linearity
and spatial homogeneity of the model, as the spatio-temporal receptive �eld of
our model cells. Inserting the assumptions (2) { (4) into (1), one observes that
the cortical response separates into a spatial component X(x) and a temporal
component T (t), that is �(x; t) = X(x)T (t). X(x) is a convolution of two
Gaussians, the input distribution Ix(x) and the feedforward kernel K(x):

X(x) =
K0�0�1p
�20 + �21

e
� x

2

2(�2
0
+�2

1
) =

K0�0�1
�r

e
� x

2

2�2
r � K0�1 e

� x
2

2�2
0 ; (5)

where �2r := �20 + �21 and the approximation holds for small stimuli, �1 � �0.
For the temporal factor T (t) one gets in the non-synchronized state (4)

T (t) =

8><
>:

c1(1� e�
t

� ) : 0 � t < t1

c2 � c1e
� t

� + (c1 � c2)e
�

(t�t1)

� : t1 � t < t2

c2e
�

(t�t2)

� � c1e
� t

� + (c1 � c2)e
�

(t�t1)

� : t2 � t

(6)

The synchronized response T (t) is obtained from (6) by setting c2 = 0. A
typical cortical response �(x; t) = X(x)T (t) is shown in Fig. 2 (left).

From �(x; t) we now derive lines of equal potential de�ned by

�(x; t) = X(x)T (t) = � = const : (7)

This relation can either be solved for x = x(t;�) or t = t(x;�) giving the
equipotential lines in parameterized form. Of particular interest is the case
where � equals the �ring threshold # (which is assumed to be the same for
all cells). Then x(t;�) describes the time course of the boundary between
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Fig.2: Left: �(x; t) for the non-synchronized case with the following parameters:
�0 = 1:7; �1 = 0:5; � = 10:0ms, t1 = 40ms, t2 = 300ms, c1 = 80I=s, c2 = 40I=s
(cf. Fig. 1 C). Right: x(t) for di�erent values of �.

silent (subthreshold) and �ring (superthreshold) cells. This is equivalent to
the width of the spatio-temporal receptive �elds as observed in experiments by
extracellular recordings. Inserting X(x), (5), into (7) and isolating x we get

x2(t) = 2�2r ln

�
K0�0�1
��r

T (t)

�
�1��0� 2�20 ln

�
K0�1
�

T (t)

�
: (8)

Using (6) for T (t) we obtain the receptive �eld width for 
ashed stimuli. Ex-
ample curves are plotted in Fig. 2 (right). Note that the width of the excited
region closely resembles the experimental results although the width �r of the
distribution of potentials is constant over time. The receptive �eld sharpening
is explained by a decreasing region of cells above threshold.

In a next step, t(x) could be determined. For � = # this de�nes the times,
when cells at location x reach threshold, i.e. when they start or stop �ring.

3. Fit to Experimental Data

To test whether the model can accurately describe the experimental data and to
estimate the model parameters, we �tted recorded �ring rates �(x; t) of on- and
corresponding o�-sub�elds of 16 V1 cells during epochs of both EEG states.
Each �eld was sampled at 20 positions with .5 degree resolution and for 30
time slices of 10 ms bin size (cf. Fig. 1C). The potentials �(x; t) are supposed to
transform into �ring rates by means of a rectilinear function f(�) = �[��#]++b
where b accounts for spontaneous background �ring. Note, that �(x; t) contains
products of model parameters (see Eqn.s 5 and 6). This implies that we cannot
determine all these parameters independently. For the same reason we may set
� to unity. We �rst determined the parameters of X(x) by nonlinear least
square �ts (Levenberg-Marquardt) of every time slice ti of the data to the
function

�(x; ti)
fit
= [qe

�
(x�a)2

2�2
r � #]+ + b : (9)

Here, a is an (arbitrary) o�set of the receptive �eld center and q(ti) is propor-
tional to T (ti) (see below). It turned out that the parameters �r(ti); a(ti); b(ti),
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#(ti) obtained this way were almost constant over time as can be seen in
Fig.s 3A,B (mean (all data sets) standard deviations: a: 6%, �r : 28%, b: 23%,
#: 17%). This justi�es our approach: the fact, that the width of the spatial
activity pro�le �r is constant over time (Fig. 3A) supports the hypothesis that
the restructuring is not due to recurrent connections in V1. Those would also
sharpen � (see [6]). The time courses of the parameters did not show system-
atic trends with the exception of b: the �tted background was slightly larger
during the initial part of the response driven by the LGN-bursts (Fig. 3B).
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Fig.3: Time course of model parameters for an example data set. A: Position
of the center of the Gaussian a and the width �r. B: Firing threshold # and
background activity b (with standard deviation). C: q(t) and the nonlinear �t.
Note that the LGN activity does not reach V1 before a delay of approx. 40 ms.

In a second step we �tted q(ti) to kT (t�t0) with k = K0�0�1=�r (Eqn. (5))
to determine the temporal parameters C1:= kc1; C2:= kc2; t0; t1; t2, and � .
Again, only products kci can be obtained from the �t. t0 accounts for latencies
between stimulus onset and cortical response, which are not contained in our
model. t2 was �xed at 300 ms because data were only sampled during stimulus
presentation. For most sub�elds good �ts were obtained (cf. Fig. 3C). The
on-sub�elds in the non-synchronized case exhibited a signi�cant adaptation
during the tonic phase (cf. Fig. 3C, 100{300 ms). In these cases adaptation
was added, i.e. c2 was replaced by c2exp(�(t� t1)=�a).

The �ts revealed that the main di�erence between on- and o�-sub�elds is
a delay of the o�-�elds of 10-20 ms, which is in accordance with the literature.
The main EEG state-dependence turns out to be the di�erence between C1

and C2, which are proportional to the LGN activity during burst and tonic
phase. It is about twice as high in the synchronized (51 I/s) than in the non-
synchronized state (25 I/s). Moreover, we �nd that bursts are more pronounced
(88�5 vs. 70�4 I/s) and the tonic component is smaller (36�2 vs. 45�3
I/s) during synchronized EEG. The other model parameters do not exhibit
dependences on the EEG-state or on sub�eld types. Standard deviations for
the temporal model parameters are very small (1-10%), i.e. the dynamics is well
covered by the simple model. Somewhat surprisingly, even the empirical time-
constant � appeared to be the same in the di�erent EEG states. Since neuronal
membranes tend to have faster response-times in the depolarized states one
may have expected di�erences in � . The lack is not completely clear; the
experiments might have been performed in a range of depolarization where � is
almost constant. In agreement with the literature [3, 6], we �nd the following
mean values: � = 13� 7 ms, t1 � t0 = 38� 17 ms, �a = 541� 238 ms.
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4. Conclusions

We have introduced a neural �eld model of LGN and V1 to describe EEG-
dependent receptive �eld changes in V1 [8]. The analytic expressions for the
cortical spatio-temporal activity, Eqns. (5) and (6), show that the restructuring
can be explained by state-dependent thalamic �ring patterns (burst vs. tonic
mode) and a pure feedforward mechanism. To test this hypothesis the model
was �tted to experimental data. Here, it is most important that the width �r
of the spatial pro�le of the estimated membrane potentials � and the �ring
thresholds # of cells remain constant over time during a whole response period,
even though a strong modulation of the receptive �eld is present (as measured
from spike rates). This supports the hypothesis that the experimentally ob-
served receptive �eld changes are mainly due to input from LGN and not so
much due to recurrent synaptic interactions in V1. Such intracortical circuits
have been suggested to be responsible for the sharpening of orientation tun-
ing curves [2, 6]. In contrast to our model, recurrent processes would lead to
changes in the width �r, which was not con�rmed by the results of the �t.
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