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Abstract

We present a hybrid model consisting of an hidden Markov chain and MLPs to
model piecewise stationary series. We compare our results with the model of gating
networks (A.S. Weigend et al. [6]) and we show than, at least on the classical laser
time series, our model is more parcimonious and give better segmentation of the
series.

1 Introduction

A hard problem in time series analysis is often the non-stationarity of the series in the
real world. However an important sub-class of nonstationarity is piecewise stationarity,
where the series switch between different regimes with finite number of regimes. A
motivation to use this model is that each regime can be represented by a state in a finite
set and each state match one expert i.e. a multilayer perceptron (MLP). Addressing
this problem, we present a class of models consisting of a mixture of experts, so we
have to find which expert does the best prediction for the time series. For example A.S.
Weigend et al. [6] introduce a gating network to split the input space.

However in this study, we use instead a hidden Markov chain, because it is a pow-
erfull instrument to find a good segmentation, and is therefore usefull in speech recog-
nition. The potential advantage of hidden Markov chains over gating networks is that
the segmentation is only local with gating networks (it decides the probability of a state
only with it’s inputs), but is global with a hidden Markov chain (the probability of the
states at each moment depends on all the observations). So we will use this model for
the time series forecasting, which has never been done when the model functions are
non-linear functions represented by different MLPs.

2 The model

We writeytt�p+1 for the vector(yt�p+1; :::; yt): Let (Xt); t 2 N be an homogeneous,
discrete-time Markov chain inE = fe1; :::; eNg, and(Yt) the series observations in the
set of real numbers. At each time the value ofXt determines the distribution ofYt .
We consider the model at each timet : Yt+1 = FXt+1

(Y t
t�p+1) + �Xt+1

"t+1 where
FXt+1

2 fFe1 ; :::; FeN g is a p-order function represented by a MLP withp entries ,
�Xt+1

2 f�e1 ; :::; �eN g is a strictly positive real number,�ei is the standard devia-
tion for the regime defined byXt, and"t an i.i.d normally distributedN (0; 1) random
variable. The probability density of�ei" will be denoted by�i.
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If the state space of(Xt) hasN elements it can be identified without loss of gener-
ality with the simplex, whereei are unit vector inRN with unity as theith element and
zeros elsewhere. The dynamics of the hidden Markov chainXt is characterized by the
transition matrixA = (aij) with P (Xt+1 = ei=Xt = ej) = p(ei=ej) = aij

1. So if we
define :Vk+1 := Xt+1 �AXt, we have the following equations for the model :�

Xt+1 = AXt + Vt+1
Yt+1 = FXt+1

(Y t
t�p+1) + �Xt+1

"t+1
(1)

Moreover, to estimate this model (1) we assume that the initial distribution of the state
X0 is�0 the uniform distribution on E. Note that conditioning by the initial observations
y0�p+1will always be implicit.

Figure 1:model HMM/MLP
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3 Estimation of the model

3.1 The likelihood

The parameter� of the model is the vector of weights of theN experts(wi)1�i�N ,
theN standard deviations(�i)1�i�Nof each models, the coefficients of the transition
matrix (aij)1�i; j�N .
The likelihood of the seriesy := (yT1 ), for a given path of the hidden Markov chain
x := fxt; t = 1; :::; Tg is :

L�(y; x) =

TY
t=1

NY
i=1

�
�i(yt � Fwi

(yt�1t�p))
�1feig(xt)

�
TY
t=1

NY
i;j=1

P�(Xt=Xt�1)
1fej ;eig(xt�1;xt) � �0(X0)

The likelihood of the series is then :
E[L�(y;X)] =

P
x L�(y; x), where

P
x is the sum over all the possibleš paths of

the hidden Markov chain.
1The traditional notation for a transition matrix is ratheraij = P (Xt+1 = ej=Xt = ei) however the

transposed notation used here as in Elliott [2] yields us a more convenient notation for the model.
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3.2 Maximization of the likelihood

It is easy to show that the exact calculus of the log-likelihood with this method have a
complexity ofO(NT ) operations, but the E.M. algorithm (Demster et al. [1]) is well
suited to find a sequence of parameters which increase the likelihood at each step, and
so converge to a local maximum for a very wide class of models and for our model in
particular. First we recall the definition of the E.M. algorithm.

3.2.1 E.M. (Expectation/Maximization) algorithm

1. Initialization : Setk = 0 and choose�0

2. E-Step : Set�� = �k and computeQ(:; ��) with

Q(�; ��) = E��

h
ln
�

L�(y;X)
L�� (y;X)

�i
3. M-Step : Find :

�̂ = argmaxQ(�; ��)

4. Replace�k+1 with �̂ , and repeat beginning with step 2) until a stopping criterion
is satisfied.

The sequence(�k) gives nondecreasing values of the likelihood function to a local max-
imum of the likelihood function . We callQ(�; ��) a conditional pseudo-log-likelihood.

3.2.2 Maximization of the conditional pseudo-log-likelihood

Calculus ofQ(�; ��) (E-Step) for fixed�� we have :

E�� [logL�(y;X)� logL��(y;X)]

= E��

2
4 TX
t=1

NX
i;j=1

1fej;eig(xt�1; xt)logP�(xt jxt�1 )

+

TX
t=1

NX
i=1

1feig(xt)
�
log�i(yt � Fwi

(yt�1t�p))
�#

+ Cte

So, let :!t(ei) = P��(Xt = ei jy ) and!t(ej ; ei) = P��(Xt�1 = ej ; Xt = ei jy ).
We have:
E�� [logL�(y;X)� logL��(y;X)]

=

TX
t=1

NX
i;j=1

!t(ej ; ei)logP�(xt jxt�1 ) +
TX
t=1

NX
i=1

!t(ei)
�
log�i(y(t)� Fwi

(yt�1t�p))
�
+ Cte

The conditional pseudo-log-likelihood is the sum of two termsU� andV�, with

U� =
TX
t=1

NX
i;j=1

!t(ej ; ei)logP�(Xt jXt�1 )
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V� =
TX
t=1

NX
i=1

!t(ei)
�
log�i(y(t)� F�i(y

t�1
t�p))

�

whereU� depends only on(aij)1�i; j�N , andV� depends only on(wi)1�i�N and
(�i)1�i�N .

To calculateU� andV�, we compute!t(ei) and!t(ej ; ei) with the forward-backward
algorithm of Baum et Welch (Rabiner [5]).

Forward dynamic Let : �t(ei) = L��(Xt = ei; y
t
1) be the propability density of the

stateei and of the observationsyt1. Then the forward recurrence is the following :

�t+1(ei) =

0
@ NX

j=1

�t(ej)� P��(Xt+1 = ei jXt = ej )

1
A���i (yt+1 � Fw�

i
(ytt�p+1))

Backward dynamic Let : �t(ej) = L(yTt+1 jXt = ej ) the backward recurrence is
the following :

�t(ej) =
NX
i=1

��i (yt+1 � Fw�
i
(ytt�p+1))�t+1(ei)� P��(Xt+1 = ei jXt = ej )

Then we get results :

!t(ei) =
�t(ei)�t(ei)PN

i=1 �t(ei)�t(ei)and

!t(ej ; ei) =
�t(ej)P��(Xt+1 = ei jXt = ej )�

�
i (yt+1 � Fw�

i
(ytt�p+1))�t+1(ei)PN

i;j=1 �t(ej)P��(Xt+1 = ei jXt = ej )��i (yt+1 � Fw�
i
(ytt�p+1))�t+1(ei)

Maximization of the conditional pseudo-log-likelihood (M-step) To maximize the
pseudo-log-likelihood, we have to separately maximizeU� andV� .

Maximum of U� We find :

âij =

PT

t=1 !t(ej ; ei)PT�1
t=0 !t(ej)
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Maximum of V� Since the noise is Gaussian we have :

V� =

TX
t=1

NX
i=1

!t(ei)

"
(yt � Fwi

(yt�1t�p))
2

2�2i
+ log

�p
2��i

�#

And it is easy to optimize each expertFei , by minimizing the cost function weighted
by the probability at each time t of the stateei, so we get

ŵi = argmin

TX
t=1

!t(ei)
�
(yt � Fwi

(yt�1t�p))
2
�

and

�̂2i = 1P
T
t=1 !t(ei)

PT

t=1 !t(ei)
�
(yt � Fŵi

(yt�1t�p))
2
�

We can then apply the E.M. algorithm, using the calculation and the maximization of
the conditional pseudo-log-likelihood.

4 Application to the laser time series

We use here the complete laser time series of “Santa Fe time series prediction and
analysis competition”. The level of noise is very low, the main source of noise are
errors of measurement. We use 11500 patterns for the learning and 1000 patterns for
out-of sample data set to validate the estimation. The transition matrix will always
be initialized with equal coefficients at the beginning of the learning and we use 10
iterations of the Levenberg-Marquartalgorithm to optimize the ponderate cost function.

4.1 Estimation with two experts

We choose to use 2 experts with 10 entries, 5 hidden units, one linear output, and
hyperbolic tangent activation functions . Therefore we assume that the hidden Markov
chain has two statese1 ande2 . The initial transition matrix is :

A0 =

�
0:5 0:5
0:5 0:5

�

We proceed with 200 iterations of the E.M. algorithm. The goal of the learning is to
discover the regimes of the series to predict the collapses and the next value prediction
of the time series.
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4.1.1 Estimation of the conditional probability of the state :

After learning the estimated transition matrix is :

Â =

�
0:994 0:025
0:006 0:975

�

Figure 2:The validation series and the conditional probability of states
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Figure 2 shows the series with the probability of the states conditionally to the
observations. We can see that the segmentation is very obvious. The first state matches
to the general regime of the series, but the second matches with the collapse regime.
Figure 3 deals with the previsions of the state at each time

Q̂k+1 = A(Qk)

whereQk is the forward estimation of the state is (with notation of section 3) :

Qk(i) =
�t(i)PN
i=1 �t(i)

Figure 3:The validation series and the forward prediction of states probability
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This prevision is not the same as the conditional probability because here we only
use the data until time t to predict the states probability at time t+1. The forecast of the
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state probability is clearly not as good as the conditional probability, however we can
still predict that when the second state becomes more probable the series will collapse.
The forecast of the next pointyt+1 (single step prediction) is given by :

Ŷt+1 =

NX
i=1

Q̂k+1(i)Fi(y
t
t�p+1)

The normalized mean square error (E.N.M.S) is then 0.0033.

4.2 Estimation with 3 experts

The architecture of experts remains the same. After learning we have below the follow-
ing results on the validation set.

Figure 4:The validation series and the conditional probability of states

0
0.5

1
1.5

2
2.5

3

0 100 200 300 400 500 600 700 800 900

DATA  

0
0.2
0.4
0.6
0.8

1

0 100 200 300 400 500 600 700 800 900

PROBABILITY E1  

0
0.2
0.4
0.6
0.8

1

0 100 200 300 400 500 600 700 800 900

PROBABILITY E2  

0
0.2
0.4
0.6
0.8

1

0 100 200 300 400 500 600 700 800 900

PROBABILITY E3  

Here the segmentation is still obvious : the second state gives the general regime ,
the third matches to the pre-collapses, and the first to the collapses.

Figure 5:The validation series with the forward prediction of states probability
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The estimated transition matrix is now :

Â =

0
@ 0:9548 0:0002 0:0204

0:0356 0:9955 0:0000
0:0096 0:0043 0:9796

1
A

The E.N.M.S. of the model on the validation set is now 0.0046, it is a little bit more
than with two experts. so it is useless to use more experts for the estimation.

5 Conclusion

If we compare with the results of the gating expert of Weigend et al.[6] applied to the
laser time series, we can see that we obtain a comparable E.N.M.S., but with many
fewer parameters. Indeed the best E.N.M.S. on the validation set is 0.0035 in their case
with 6 experts and 0.0033 with 2 experts in our case. Moreover our model gives a much
better segmentation of the series. That is to say, the segmentation with the gated expert
oscillates always from one state to another (see Weigend et al. [6]), but is very obvious
with our model. Finally this model seems to be very promising not only for forecasting
but also to predict the change of trends in a wide class of processes like financial crack
or avalanche, since the prediction of the next state gives an insight to the future behavior
of the process.
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