ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 111-116

Benefits and Limits of the Self-Organizing
Map and its Variants in the Area of
Satellite Remote Sensoring Processing

Thomas Villmann*
Universitéit Leipzig, Klinik fiir Psychotherapie
D-04107 Leipzig, Karl-Tauchnitz—Str.25, Germany

Abstract. In the contribution we consider advantages and limits of the
self-organizing maps in the area of satellite remote sensoring processing.
Thereby we concentrate on the topology preservation property as well
as the magnification control. We demonstrate the benifits for exemplary
examples of LANDSAT-TM satellite images.

1. Introduction

The process of satellite remote sensoring usually is indicated by very large data
sets, high-dimensional data spaces and correlated and noisy data. These facts
prefer the application of neural maps for investigations. Thereby they may
used as preprocessing tools as well as final applications [1, 10].

Self-organizing maps (SOM) [8] as special kind of neural maps project data
from some (possibly high-dimensional) input space V C RPv onto a position in
some output space, such that a continuous change of a parameter of the input
data should lead to a continuous change of the position of a localized excita-
tion in the neural map.! This property of neighborhood preservation depends
on an important feature of the SOM, its output space topology, which has to
be specified prior to learning. Usually the output space A of the SOM is a D 4-
dimensional rectangular grid.(hypercube). If the topology, i.e. dimensionality
and edge length ratios, of .4 does not match that of the data shape, neighbor-
hood violations are inevitable [12]. A higher degree of topology preservation,
in general, improves the accuracy of the map [3].

In the present paper we consider the advantages and limits of the SOM
for applications in satellite remote sensoring processing systems and give some
variants to improve the performance of the SOM. Thereby we emphasize the
aspect of a continuous mapping, i.e. the control of the topology preservation.

2. SOMs as Topology Preserving Maps

We require that the output space A in SOM is a D 4-dimensional rectangular
grid of N neurons r which can in principle be of any dimensionality, or can
extend to any dimension along its individual directions. This can be cast
in a formal way by writing the output space positions as r = (i1,42,i3,...),
1 <i; <n; with N =mn1 xng X ... .2 Associated to each neuron r € A4, is a
weight vector w,. in V. The map Wy,_, 4 is realized by a winner take all rule

Wy ,4:Vi—s=argmin v — wy| (1)
reA
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1In this way the SOM determines the non-linear principle components of the data.

2Yet other arrangements are also admissible which can be described by a connectivity
matrix. Here we only consider hypercubes.
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whereas the back mapping is defined as ¥ 4 .y : r — w,. Both functions
determine the map M = (Uy_, 4, ¥ 4 ,y) realized by the network. All data
points v €V which are mapped onto the neuron r perform its (masked) receptive
field ©2,. To achieve the map M, SOMs adapt the pointer positions with respect
to a presented sequence of data points v €V selected according to the data
distribution P (V):

AWy = €hps (V—Wy) . (2)

hys is the neighborhood function depending on the best matching neuron ac-
2
cording to (1), usually chosen to be of Gaussian shape: h,s = exp (f%)

Topology preservation in SOMs is understood as preserving of the conti-
nuity of the mapping from the input space onto the output space, exactly
spoken: it is equivalent to the continuity of M between the topological spaces
with properly chosen metric in both M and V . Because of the lack of space
we refer to [12] for a detailed consideration. The topology preserving property
one can use for immediately evaluations of the resulted map, for instance for
interpretation as color space as demonstrated in sec. 3. . On the other hand
topology preservation allows the applications of interpolating schemes like the
parametrized SOM (PSOM) [11] or interpolating SOM (I-SOM) [5]. Several
approaches were developed to judge the degree of topology preservation for a

given map. Here we shortly give a variant P of the well known topographic
product P [3] which uses, instead of the Euclidean distances between the weight
vectors, the respective distances d9” (w,, w ) of minimal path length in the in-
duced Delaunay-graph Gy of the w,.. Gy, corresponds to the Voronoi tessellation
of V by the masked receptive fields Q. During the computation of P for each
node r the sequences n?(r) of j-th neighbors of r in A and nY (r) describing

J
the j-th neighbor of w,, have to be determined. These sequences and further

averaging over neighborhood orders j and nodes r finally leads to

d9v (Wr7 Wn;"(r)) dA (I‘, nf\(r))

N—-1
- 1 1
P=—oce—=>">" —log [T . (3)
N(N —1) £~ & 2j =g (wr:anm) da (r,n)(r))
1

P can take on positive or negative values: IfNIND < 0 holds the output space is
too low-dimensional, in contrast if we have P > 0 the output space too high-

dimensional. In both cases neighborhood relations are violated. Only if P~0
is valid the output space approximately matches topology of input data. The

present variant P of the overcomes the problem of strongly curved maps which
may be judged to be neighborhood violating by the original P, even though
the shape of the map might be perfectly justified [12].

2.1. Growing SOM for Structure Adaptation

The growing SOM (GSOM) approach is an extension of the usual SOM [4]. Its
output A are hypercubes whereby during the learning procedure additionally
to the weight vector learning both the dimension and the respective length
ratios are adapted, i.e. we allow a variable overall dimensionality and variable
dimensions along the individual directions in the hypercube.

The GSOM starts from an initial 2-neuron chain, learns according the regu-
lar SOM-algorithm, adds neurons to the output space with respect to a certain
criterion to be described below, learns again, adds again, etc., until a prespeci-
fied maximum number Npy.x of neurons is distributed. During this procedure,
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the output space topology remains to be of the form n; X ny x ..., with n; =1

for j > D4, where D 4 is the current dimensionality of 4.3 From there it can
grow either by adding nodes in one of the directions which are already spanned
by the output space or by initilizing a new dimension.

This decision is made on the basis of the receptive fields €2, . When recon-
structing v €V from neuron r, an error § = v — w,. remains decomposed along
the different directions, which result from projecting back the output space
grid into the input space A:

A
h=v—w, = Z ai(v) Wrie; — Wr—g + v/ (4)

HWI"‘Fei — Wr—g;

Thereby, e; denotes the unit vector in direction i of A.* Considering a receptive
field Q. and determlmng their first prmmple components wpc 4 allows a further
decomposmon of v/. Projection of v/ onto the direction of wpc 4 then yields
aDA-H(V) w
A
V' = ap 1 (V) e 4V (5)
lwpeall
The criterion for the growing now is to add nodes in that direction which
has on average the largest error (normalized) expected amplitudes a;:

| ai(v o
1/mHZ DA+1 2( ), i=1,..,D4+1 (6)

After each growth step, a new learning phase has to take place, in order to
readjust the map. For a detailed study of algorithm we refer to [4T

2.2. Magnification Control in SOM

The usual SOM distributes the pointers W ={w,} according to the input
distribution: P (V) ~ P (W)* with the magnification factor a = 2.° BAUER
ET AL. in [2] introduced a local learning parameter €, with (e,) o< P (V)™ in

(2) which now reads as
AWy = €ghps (Vv —wWy) . (7)

This local learning rule leads to a relation P (V) ~ P(W)O‘/ with o/ =
a(m+1) and, hence, allows a magnification control. Especially, one can
achieve a resolution o = 1 which maximizes transinformation [9, 13].

3Hence, the initial configuration is 2 x 1 x 1 x ..., D4 = 1.
4 At the border of the output space grid, where not two, but just one neighboring neuron is
Wr—Wr_o, Wrie; —
|‘wr7wr7e,b-‘| T e e; ~Wr H
space direction e; into the input space.

5This result is valid for the one-dimensional case and higher dimenional ones which
separate.

available, we use to compute the backprojection of the output
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3. Application to Satellite Remote Sensoring

Satellites of LANDSAT-TM type produce pictures of the earth in 7 different
spectral bands. The ground resolution in meter is 30 x 30 for the bands 1-5 and
band 7. Band 6 (thermal band) has a resolution of 60 x 60 only and, therefore,
it is often dropped. The spectral bands represent useful domains of the whole
spectrum in order to detect and discriminate vegetation, water, rock formations
and cultural features [12]. Hence, the spectral information, i.e., the intensity of
the bands associated with each pixel of a LANDSAT scene is represented by a
vector v €VC RPV with Dy = 6. The aim of any classification algorithm is to
subdivide this data space into subsets of data points which belong to a certain
category corresponding to a specific feature like wood, industrial region, etc.,
each feature being specified by a certain prototype data vector. One way to get
good results for visualization is to use a SOM dimension D 4 = 3 [7]. Then we
are able to interpret the positions of the neurons r in the lattice A as vectors
r=c = (r,g,b) in the color space C, whereby r,g,b are the intensity of the
colors red, green and blue [7]. This assigns colors to winner neurons so that we
end up immediately with the pseudo color version of the original picture for
visual interpretation. However, since we are mapping the data clouds from a
6-dimensional input space onto a three-dimensional color space there may arise
dimensional conflicts and the visual interpretation may fail. Usually, for visual
interpretation only the band 2, 3, 4 are used which means a loss of information.

In the first example we investigated a picture of the north—east region of
Leipzigb. For comparison we also trained several usual SOMs with fixed output
spaces and determined the respective P—values (3) which are depicted in Tab.

1. The topographic product P prefers a output space dimension D 4 between 2
and 3. However a clear decision can not be made. An additional Grassberger-
Procaccia-analysis [6] yields Dip ~ 1.7. Here should be mentioned that we
applied in this runs, as well as in the further GSOM-simulations, instead the
original learning rule (2) the new one (7) to achieve a maximum of transinfor-
mation as pointed out in sec.2.2. .

The GSOM algorithm was applied in several runs (10° lernsteps) with dif-
ferent values Ny .. The obtained results are depicted in Tab. 2 and Fig. 1.

The achieved P—values are better than the respective values for the fixed lattice
structures. Furthermore, for all numbers Ny.x of maximal allowed neurons, we
achieved approximately the same structure and the length ratio’s of the edges
shows a good agreement with considerations of the usual principle component
analysis (PCA) of the data space:

8obtained from UMWELT-FORSCHUNGSZENTRUM Halle-Leipzig, Germany

N lattice structure | P

256 | 256 —0.189 - 0.00612
256 | 16 x 16 —0.0642 £ 0.00031
252 | Tx6 X6 +0.0282 £ 0.00024

256 | 4 x4 x4 x4 +0.0816 £ 0.00387

Table 1: Table of the topographic product P for different but fixed output
spaces for the LANDSAT satellite image of Leipzig. For each structure over 3
runs was averaged.
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ev = (274.06,76.19, 39.78,11.92,8.27,6.28)" (8)

as the vector of the respective eigenvalues. However, in general, the usual but
linear PCA fails, as shown in second example. It is again a LANDSAT-scene,

but now from the Colorado-area’. The respective PCA yields

ev = (4.93121,0.6838,0.29047, 0.05474, 0.02242, 0.01737) " (9)

suggesting an one-dimensional structure, whereas a Grassberger-Procaccia-
analysis [6] gives Dip ~ 3.1414. The GSOM generates a 12 x 7 x 3 lattice

structure (Npmax = 256) which corresponds to a P-value of 0.0095 indicating
again a good topology preservation.
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Figure 1: Pseudo-color imgages of LANDSAT-TM six-band spectral images:
above - Leipzig image using the 7 x 6 x 6 standard SOM (left) and the 14 x 6 x 3
GSOM-solution; bottom - Colorado image using the standard psuedo-color
vizualization using only bands 2, 3, 4 (left) and the 12 x 7 x 3 GSOM-solution;
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