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Abstract. Estimating the intrinsic dimensionality (ID) of an intrin-
sically low (d-) dimensional data set embedded in a high (n-) dimen-
sional input space by conventional Principal Component Analysis (PCA)
is computationally hard because PCA scales cubic (O(n3)) with the input
dimension [11]. Besides this computational drawback, global PCA will
overestimate the ID if the data manifold is curved. In this paper we ap-
ply ID OTPM [1], a new algorithm for ID estimation based on Optimally
Topology Preserving Maps [7] to image sequences. In particular, we uti-
lize ID OTPM for ID estimation of an AVIRIS data set, a hyperspectral
remote sensing image cube, with input dimension of the individual image
planes n = 257880.

Most interestingly, our experiments suggest that the inter-band dimen-
sion db of the AVIRIS data set is between one and two, whereas the
spectral dimension ds is about four. These results provide important
clues for compression, visualization and classi�cation of the the AVIRIS
data set.

1. Introduction

An example of hyperspectral imagery is from the sensor AVIRIS, which takes
194 spatially co-registered images at 194 di�erent wavelengths (see [8], this
volume). It is like a stack of 194 images of the exact same spatial region.
The 194-dimensional spectrum associated with each spatial pixel identi�es the
surface material within the respective pixel. Yet building classi�ers who au-
tomatically determine the surface material at a given pixel location from the
194-d re
ectance spectrum for this pixel has turned out far from trivial (again
see [8] for a brief overview), and hence a more detailed analysis of the data
set seems appropriate. One question we might ask is how many "clusters" we
can �nd in the data set, hoping that it corresponds to the number of surface
classes. A more basic question is what the intrinsic dimensionality of the data
set is like.

The intrinsic, or topological, dimensionality of N patterns in an n-dimen-
sional space determines whether the n-dimensional patterns can be described
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adequately in a subspace (submanifold) of dimensionality m < n [4]. By pro-
viding a bound on the number of parameters needed to describe a data set, ID
estimation is a valuable tool in system identi�cation, classi�er and regressor
design as well as in data visualization. For example, if the ID of a data set is 2
or 3, the data can be mapped to a 2 or 3 dimensional map [6] and visualized for
monitoring or diagnosis purposes without distortions. And in classi�er and re-
gressor design, particular within the neural network approach, the complexity
of classi�ers (number of basis functions, hidden units) with best generalization
properties is well known to depend on the ID [2].

Our approach to ID estimation (ID OTPM) is based on optimally topology
preserving maps (OTPMs) and local principal component analysis (PCA). It is
conceptually similar to that of Fukunaga and Olsen [3] using local PCA as well,
but by utilizing OTPMs can be shown to better scale with high dimensional
input spaces (linear instead of cubic) and to be more robust against noise.

2. ID estimation with OTPMs

For the convenience of the reader, we will now brie
y review some basic proper-
ties of Optimally Topology Preserving Maps and provide a condensed descrip-
tion of our ID estimator. More details as well as an extended discussion can
be found in [1].

2.1. Optimally Topology Preserving Maps

Optimally Topology Preserving Maps (OTPMs) are closely related to Mar-
tinetz' Perfectly Topology Preserving Maps (PTPMs) [7] and emerge if just
the construction method for PTPMs is applied without checking for Martinetz'
density condition1. Only in favorable cases one will obtain a PTPM (proba-
bly without noticing). OTPMs are nevertheless optimal in the sense of the
topographic function introduced by Villmann in [12]: In order to measure the
degree of topology preservation of a graph G with an associated set of centers
S, Villmann e�ectively constructs the OTPM of S and compares G with the
OTPM. By construction, the topographic function just indicates the highest
(optimal) degree of topology preservation if G is an OTPM.

De�nition Let p(x) be a probability distribution on the input space Rn,
M = fx 2 Rnjp(x) 6= 0g a manifold of feature vectors, T �M a training set of
feature vectors and S = fci 2M ji = 1; : : : ; Ng a set of centers in M .

We call the undirected graph G = (V;E), jV j = N , an optimally topology

preserving map of S given the training set T , OTPMT (S), if

(i; j) 2 E , 9x 2 T 8k 2 V nfi; jg : maxfk ci � x k; k cj � x kg �k ck � x k

Note that the de�nition of OTPMT (S) is constructive: Simply pick x 2 T

according pT (x), calculate the best and second best matching centers, cbmu and

1This density condition could only be checked if the data manifold was known
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csmu, and connect bmu with smu. This procedure is just the essence of Mar-
tinetz' Hebbian learning rule for topology representing networks. Obviously,
for a �nite training set T the OTPMT (S) can be constructed in time O(jT j).
For a training set de�ned via a pdf pT (x), G will converge to OTPMT (S) with
probability one. Finally, if T = M and if S is dense in M then OTPMT (S)
will become a PTPM.

For our purposes, OTPMT (S) has two important properties. First, it does
only depend on the intrinsic dimensionality of T , i.e. it is independent of the
dimensionality of the input space. Embedding T into some higher dimensional
space does not alter the graph. Second, it is invariant against scaling and
rigid transformations (translations and rotations). Just by de�nition it is the
representation that optimally re
ects the intrinsic (topological) structure of the
data.

2.2. E�cient ID estimation based on local PCA of OTPMs

Central to our ID estimation procedure is the fact that the number of neighbors
of a node in an OTPM only depends on the intrinsic dimensionality d and is
independent of the input dimensionality n.

ID OTPM proceeds in four stages (batch-variant). First, generate a set of
N centers S = fc1; : : : ; cNg as the output of a vector quantization algorithm
working on the training set T . Second, calculate the graph G as the optimally
topology preserving map, OTPMT (S), of S w.r.t. T . Third, for each node
i 2 G perform a principal component analysis of its correlation matrix 1

mi
ATA,

AT = [c1i � ci; : : : ; cmi
� ci], with (cji � ci) the di�erence vectors between ci

and cji , the center of its j-th direct topological neighbor in G. Finally, exclude
eigenvectors corresponding to very small eigenvalues.

As a result of the vector quantization stage the centers are placed within
the manifold M and noise orthogonal to M is �ltered out. OTPMT (S) is
constructed by simply connecting nodes corresponding to best and second best
matching centers on presentation of T .

The main \trick" is to use the di�erence vectors (cji � ci) for PCA of each
local subspace and not the data in a local region itself, as e.g. in [3] or [5]:
First, the di�erence vectors have very low noise component orthogonal to M
(due to the noise reduction property of the vector quantizing stage), and second,
the number of neighbors mi of a node in an OTPM does only depend on the
intrinsic dimensionality d and is small for small d. Straightforward PCA of the
correlation matrix 1

mi
ATA nevertheless would take time O(n3) [11], yet the mi

eigenvectors andmi eigenvalues can be obtained by PCA of AAT as well, cf. [9],
taking only time O(m3

i ). Since AA
T clearly can be computed in time O(m2

in),
and the number of neighbors m of a node in an OTPM does not depend on n
but the intrinsic dimensionality d, local PCA of the correlation matrix takes
only time O(m(d)2n +m(d)3) and hence scales only linearly (optimally) with
the input dimensionality.

Deciding, what size an eigenvalue as obtained by each local PCA must have
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to indicate an associated intra-manifold eigenvector, amounts to determining
a threshold. We adopted the D� criterion from Fukunaga et. al., [3], that
regards an eigenvalue �i as signi�cant if

�i

maxj �j
> �%. If no prior knowledge

concerning the distribution of the noise is available, di�erent values of � have
to be tested.

3. Experimental results

Given the 194 bands of the AVIRIS data set with 512 � 614 pixels each, the
intrinsic dimensionality of this data set can be de�ned in two ways. The �rst
is the inter-band dimensionality that is obtained if we regard each of the 194
bands (images) as a point in 512 � 614 dimensional image space. Hence we
have the problem of estimating the ID for 194 257880-d points. The other way
of looking at the data is to focus on the 194-d spectrum at each pixel and
determine the the ID of 257880 194-d points. The latter is referred to as the
spectral dimension.

Figure 1 depicts the results of applying ID OTPM to the estimation of the
inter-band dimensionality, working with 194 257880-d points. It shows the
ID estimates obtained as the mean number of signi�cant local eigenvalues by
ID OTPM for di�erent numbers of centers on the 1% (D1) and 10% (D10)
level. The standard deviations of the estimates are included as error bars on
the D10 level. The plots clearly indicate an ID between one or two.
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Figure 1: ID plots for estimating the inter-band dimension on D1 and D10 level with
errorbars on D10 level.

On the other hand, �gure 2 shows the ID-estimate for the spectral dimen-
sion, working with 257880 194-d points. ID estimation on the 10% (D10) level
suggests that the spectral dimension is about 4. The plot for the 1% (D1) level
con�rms a low intrinsic dimensionality, yet taking into account more noise and

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 105-110



curvature as on the 10% level returns higher estimates (whether the additional
small eigenvalues bear important information or not can only be decided in clas-
si�cation experiments). Again, the plots were obtained as the mean number
of signi�cant local eigenvalues by ID OTPM for di�erent numbers of centers,
standard deviations included as error bars on the D10 level.
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Figure 2: ID plots for estimating the spectral dimension on D1 and D10 level with
errorbars on D10 level.

4. Conclusion and Outlook

Applying ID OTPM we were able to estimate the inter-band dimensionality
of the AVIRIS data set between one and two and the spectral dimensionality
as about four. But what is the bene�t of this? First of all, the results are
encouraging in that they indicate that in both cases the ID is quite low and
hence local approximation schemes (as e.g. mixture models, RBF networks
or extended SOMs) are indeed promising candidates for classi�cation of the
AVIRIS data. Second, the low intrinsic dimensionality of the data allows com-

pression of the data. If e.g. local linear modeling is applied [5], instead of
transmitting 257880 194-dimensional vectors it su�ces to initially transmit a
small number of codebook vectors and to code each vector as the index of the
best matching code-vector and the 4 projection coe�cients to the local subspace
(5-tuple). Third, in order not to work with 194-d inputs for a classi�er one may
try to reduce the input dimension to 4. Here, a an autoassociative bottleneck
network with 4 hidden nodes lends itself for mapping the 194-d data to a 4
dimensional coordinate system [10]. Also, the low intrinsic dimensionality of
the data justi�es the use of 2-d SOMs for visualization or clustering of AVIRIS
data, since the e�ective dimensionality reduction is only from 4 to 2 dimen-
sions. Finally, the di�erence between inter-band and spectral dimensionality
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gives insight into the physical process: Tuning the wavelength (1 parameter)
causes a smooth 1-dimensional transition between the di�erent bands, yet re-
veals more information (4-d spreading) in the spectrum. This explains the
enhanced discriminative power of multiband remote sensing

We want to point out that the approach presented in this paper does not
only return the local ID estimates but also the sets of orthonormal vectors
spanning the local subspaces which can be directly used for subspace modeling
of the data.
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