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ABSTRACT

 We investigate the use of artificial neural networks in classifying hyperspectral data. Such data
when collected from remote sensors provides extremely detailed coverage of e.g. the
mineralogical composition of planetary surfaces, however the volume of data supplied often
overwhelms traditional classifiers. When we wish to investigate such data sets in an open-ended
manner, the use of unsupervised learning is a pre-requisite. A set of remotely sensed spectral
images are use to train several different topology preserving neural networks. In each method,
the data is projected onto a two dimensional grid designed to visualise the data set in a low
dimensional space. Such mappings allow graceful degradation of the classifications given by
the mappings since nearby data points are mapped to the same or similar classifications.
 
Introduction
 
We investigate the use of three unsupervised techniques as classifiers of astronomical
data. The data consists of 65 colour spectra of 115 asteroids used by [1]. We compare
the relative performance of three networks on this dataset. Due to the high
dimensionality of the spectral data, the classification can result in several different 2-d
mappings; this will always occur when mapping high dimensional data onto a lower
dimension and is determined by the interaction between the non-linearity and
network’s initial starting conditions.

To assess the effectiveness of the mappings, we use only the 12 classes proposed by
Tholen [2], which has given a different classification from that of  Howell et al. [1].
Each of the different techniques used also produces a different mapping. We compare
the use of the following three different self-organising artificial neural networks to
classify the spectral data while preserving topological relationships:
1. The Kohonen SOM [3] has previously been shown to be useful in mapping such

data sets [1].
2. The Scale Invariant Feature Map [4] has been shown to ignore the magnitude of

signals and organise on the basis of the distribution of directions of the input data
3. The Generative Topographic Mapping, (GTM) [5], which has been developed as

a “principled alternative to the SOM”.
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Kohonen’s Self-Organising Feature Map

Kohonen’s algorithm consists of a single layer network where competition between
output neurons determines which weights are updated. In the SOM not only are the
weights attached to the winning neuron, c, updated but weights of nodes that are
neighbours to the winning node are also updated

),()( ciwxw ijjij Λ−=∆ η
using the neighbourhood function Λ(i, c) of the winning neuron c. The neighbourhood
function is a monotonically decreasing function of the distance between i and c.
Normally this function is a difference of Gaussians. This results in the network trying
to get all of its neurons to cover the input space which can result in neurons that do
not cover any data points at all.

The weight parameters of the SOM are normally initialised to small random values,
however in this study we have initialised the weights vectors to lie on a hyperplane
determined by the first two principal components of the data. This method has already
been used by Bishop et al. with the GTM and it is our finding that convergence of the
SOM was more consistent and seemed to provide better discrimination than with
random initialisation.

Scale Invariant Map

We have previously introduced a network [6] that self-organises to find a mapping of
the input data that preserves neighbourhood relations, but the difference between this
mapping and the SOM is that the mapping is scale invariant.  When the SOM is
trained it approximates a Voronoi tessellation of the input space. The scale invariant
map, however, creates a mapping where each neuron captures a “pie slice” of the data
according to the angular distribution of the input data (see Figure 1).

Consider a network with n  dimensional input data and having m  output neurons and
a m n× weight vector that is initialised to small random values.  A competition takes
place between all outputs. The neuron whose weights have the smallest angle with the
input vector wins. Let the winning neuron be the cth.
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Now the winning neuron excites those neurons close to it, i.e. we have a
neighbourhood function ),( jcΛ  which satisfies ),(),( kcjc Λ≤Λ  for all

||||||:||, kcjckj −≥−  where ||.||  is the Euclidean norm.  For this experiment the

neighbourhood function is a Gaussian whose variance is decreased during the course
of training. Then simple Hebbian learning gives:
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where we have used x tj ( )  as the activation of the jth input neuron at time t and wij
 is

the weight between this and the ith output neuron. Note that every weight vector is
updated in the direction of the vector 

cwx −  by a magnitude dependant on the

neighbourhood function.
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Figure 1: A one-dimensional scale invariant feature map and a Kohonen map on the
data drawn from a uniform distribution.

Generative Topographic Mapping

The GTM was introduced in 1996 as a more principled alternative to the SOM. Like
the SOM, the GTM consists of a regular lattice of K nodes arranged in a latent space
that normally has fewer dimensions than the data space. The latent space is typically
one or two-dimensional. These nodes are mapped into data space to give a non-linear
manifold arranged in the high-dimensional space. With the SOM, we normally
consider a data vector, x , to be coded as a qualitative value, c, which is given by the
position of the winning node. However, with the GTM, a data vector is presented to
the network and a responsibility for the observed input (posterior probability) is
calculated for each node in the lattice. Therefore, a data vector stimulates a posterior
distribution across the whole map – not just a single winning node. It is still possible
to map data to a single point in latent space by considering, for example, the mean or
the mode of the posterior. During training, the responsibilities are used to update the
weights in order to maximise the expectation of the observed input using the EM
algorithm.
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In the case of the SOM, the mapping from latent to data space );( Wy id consists of

selecting a D-dimensional weight vector corresponding to each node, but with the

GTM, there is a two-stage mapping.  Firstly a set of M basis functions )(yjφ fixed in

the latent space is used to map points (the nodes of the lattice) from L-space to M-
space, and secondly, a weight matrix W maps from basis space to data space

)(yWφ .  The activation of each basis node is determined by a function of the

Euclidean distance between the latent space point and the centre of the basis function.
This is similar to the first layer of a radial basis function network. The centres of the
basis functions are usually distributed uniformly amongst the nodes of the lattice. In
our experiments, we used Gaussian basis functions as described below, although it is
possible to use other probability distributions. When a point is mapped from latent to
data space a probability density is generated in data space using a noise model
determined by the basis functions.
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(where β is the inverse variance of the noise model.)
After all latent space nodes have generated distributions in the data space, the
observed data vector, x , is then used to evaluate a responsibility for each node in the
latent space lattice. This calculation completes the E-step.
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During the M-step a system of linear equations is solved to calculate a new weight
matrix using
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where is a K×M matrix with elements )( iij yφφ = , X is the matrix of training

vectors and G is a diagonal K×K matrix with elements iiG being a sum of

responsibilities of lattice node i  over all data vectors in the training set. A new
inverse noise parameter, β, is given by
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There are several advantages to be gained over the SOM: it is a principled method
with a well-defined cost function and convergence can be proven; the cost function
gives a good indication of the degree of convergence during training and it is
therefore useful as a stopping criterion; the GTM has few parameters that require to
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be chosen by the user, and it is not necessary to select ad hoc parameters for specific
data sets; topology preservation is always guaranteed with the GTM due to its smooth

mapping function );( Wy id whereas the SOM is topology preserving only after self-

organisation has taken place.

Results

Figure 2 GTM Figure 3 Scale Invariant
Projection of the data set onto the GTM space Projection of the data set onto the Scale

Invariant mapping.

The results show that all three maps are
able to classify the data. The interesting
points are the differences in the
classification. The first thing to note is
that the GTM unlike the other two maps
is capable of non-integer mappings.
Visually the GTM has achieved better
cluster separation, whereas the SOM has
mapped the data points in a diagonal
where the large areas of the edges of the
mapping are redundant. The SOM was
also prone to over-train on the data; the
decision as to when to stop training the
SOM is very subjective. The SOM has
mispositioned an S type asteroid at
position 14,0 (S type 138 tolosa is
positioned on top of 2 M types, 92
undina and 849 ara). The GTM has not
made the same classification errors for
the S type asteroids. The errors that have

occurred with the GTM are on the border where asteroids with similar spectra

Figure 4 : SOM

Projection of the data set onto the converged
SOM space
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overlap. This is because the GTM has a continuous mapping function unlike the
SOM, which quantises similar data vectors to the same point on the map.

308 polyxo is a type T asteroid that has been misclassified by all three networks since
it has different spectra from the other type T asteroids. The misclassification is
unavoidable and most pronounced in the scale invariant map as the map classifies on
orientation and not magnitude.

Each of the three networks were also tested on data that was excluded from the
training set. In each case, classification was correct with the exception of a T asteroid.
This asteroid (308 polyxo) was also incorrectly classified when it was included in the
training set and therefore this misclassification should be expected. The other correct
classifications show that each of the three algorithms have successfully produced
general classifiers.

Conclusions

 Using visual inspection, the network that had the best performance on this data was
the GTM, which had the fewest misplacements (where 1 node was used for two types
of asteroids).

We have also compared the mappings with the new classes derived by Howell et al
[1]; with the parameter set used above, the difference between the SOM and the GTM
was negligible. However, it is our experience that a small change of parameter values
can lead to substantially different mappings with all three methods. This suggests that
this problem is more usefully tackled using a data mining method in which the
interaction between skilled human expert and exploratory neural method will lead to
the best results.

The GTM is a probabilistic method which provides a pdf of responsibilities. We are
currently investigating methods of combining such a pdf with the more discrete
decisions of the other two  networks in order to perform robust classification.
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