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Abstract.

A hyperspectral remotely sensed image may be modeled as a linear mix-

ture of the spectral responses of unknown spectral endmembers. Using

the a-priori information that the unknown spectral abundance images

should be spatially homogenous, a simple associative neural network may

be trained using Hebbian learning to extract spectral endmembers and

corresponding abundance images from a hyperspectral image.

The technique is applied to an AVIRIS image of Cuprite, Nevada and

is compared to an interactive technique for approximating the spectral

convex hull of a hyperspectral image that requires a-priori geological

knowledge to identify spectral endmembers.

1. Introduction

The spectral mixing model is the most successful algorithmic approach to date
for the interpretation of hyperspectral imagery [1]. The main idea is to decom-
pose the image into a product of mixing abundances of a library of spectral
endmembers

image = library � abundances (1)

We call this approach a spectral factorization of the image. In the same way
that any integer may be decomposed into a product of prime numbers, so can
an image be decomposed into the sum of responses of spectral endmembers.
The spectral analogue of a prime number is an endmember spectrum and an
image may be interpreted by looking at images of the spectral abundances of
each library spectrum. In the model described above, the spectral library is a
collection of endmember spectra. There are two main ways to �nd a spectral
library given an image:

� The endmember spectra are image pixels

� The endmember spectra are a synthesis of image pixels
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2. Endmember spectra as image pixels

To �nd endmember pixels in an image, we choose a large random sample of
image spectra. All these spectra fall within the convex hull of the data, the
vertices of which are candidate spectral endmembers in that any spectrum in
the interior of the hull is by de�nition a non-negative linear combination of
convex hull vertices. To estimate the vertices of the convex hull, we compute
many random 1-dimensional projections of the sampled spectra. We record
how many times the projection of a particular spectrum is extremal (i.e. has
either the smallest of largest projection value). Extremal projected spectra are
candidate endmembers and may then be examined by an expert and a spectral
library selected. For more details see [2]. There are several pros and cons to
this approach:

2.1. Pros

A particular endmember spectrum may be located in the image and visited.
This aids in identi�cation of the spectral endmember.

2.2. Cons

1. How many spectral endmembers should we �nd? This is a crucial ques-
tion. Too many and we either model noise in the data and/or split a
feature into a mixture of two or more other endmembers. This will ob-
viously confuse the interpretation. Too few and we may not be able to
discriminate the features of interest.

2. There is a practical limitation in the number of endmembers available for
an image. Endmembers form a basis for an n-dimensional vector space,
where n is the number of spectral bands in the image. A fundamental
rule from linear algebra limits the number of linearly independent vectors
in an n-dimensional vector space to n, i.e. there is an upper bound of
the number of spectral bands for any one spectrum of a hyperspectral
image. This is not much of a problem for AVIRIS images which have
many hundreds of spectral bands, but may be an issue for airborne or
satellite systems with tens of spectral bands.

3. Endmember spectra should ideally be pure and not mixtures themselves.
This is not always the case, particularly in heavily vegetated scenes. Each
image pixel will be a combination of vegetation and other spectra.

4. The procedure is crucially dependent on how well the random sample
of image spectra represents the image - if the target is a spatially small
feature and is not sampled, it cannot become an endmember spectrum.

5. The algorithm outlined above is susceptible to noise - a noisy pixel may
become an endmember and any noise present in a spectrum is retained
in the spectral library.
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All the above problems may be overcome. Noisy endmembers may be identi�ed
by computing their abundance in the image. If the abundance images have a
salt and pepper appearance, the endmember may be removed from the library.
The size of the random sample may be increased or the procedure repeated
several times with di�erent random samples to increase the con�dence of de-
tecting small features. Spectrally pure endmembers may be extracted from a
spectral library by modifying endmember spectra to minimize the unmixing
error.

3. Cuprite case study

The AVIRIS image used in this study is available on the Envi 3.1 Tutorials
& Data CD-ROM from Research Systems Inc, is a 50-band SWIRII [2000nm
- 2500nm] subset of satellite data over Cuprite, Nevada. The image has 400
columns and 350 rows and 16 bit precision. Spectral band twenty �ve (2230nm)
is shown as Figure 1.

Figure 1: Aviris 2230nm image of Cuprite
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This piece of geological real estate has become something of a standard
image for evaluating multi- and hyperspectral processing algorithms [1][4].
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4. Endmember spectra as combinations of im-

age spectra

An alternate mechanism for estimating spectral endmembers from a hyper-
spectral image is to consider the images of spectral abundances. Returning to
our simple linear mixing model (1) we can express it in the notation of linear
algebra as d = Sx where d is an image spectrum, S a library of spectral end-
members and x the spectral abundances. We have d but do not know either
S or x. From looking at geological maps and our own observations, we know
that the spectral abundance image sx corresponding to a single endmember
spectrum s should be spatially concentrated - the abundance image should be
blobby. If we choose a measure of blobiness for an image, we can look for a
linear combination of the spectra d with weights w1 such that wT

1
d is blobby. If

we remove the contribution of this abundance image to the data, we may then
search for a second linear combination w2 such that wT

2
d is blobby. Repeating

this process, we construct a matrix W such that Wd is as blobby as possible.
Our spectral library S is then simply the pseudoinverse of W .

4.1. Estimation of w1

We shall constrain w1 to have unit norm as our mixing model d = Sx and
equivalent unmixing model Wd = x is invariant to multiplication by a scalar.
Choosing w1 randomly, we may compute an abundance image wT

1
D where

D is the hyperspectral image consisting of individual spectra d. To measure
the spatial homogeneity of wT

1
D, we convolve it with a Gaussian convolution

kernel of a speci�c size. The larger the kernel, the larger the scale of the spatial
homogeneity which will be measured. The norm of the convolved image is a
measure of the spatial homogeneity. We update w1 by an amount proportional
to w1 using Hebbian learning [3]. The updated weights are then re-normalized.

4.2. Estimation of w2

With w1 estimated, we may remove its e�ect from the image D by replacing D
with D � w1w

T

1
D. w2 may be computed from the residual image in a fashion

analogous to the estimation of w1.

5. Example

We computed 20 spatially concentrated spectral abundance images for the
Cuprite Aviris image described above. The spatial concentration measures
for each of the images are plotted as Figure 2.
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Figure 2: Cuprite abundance smoothness
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From an analysis of the above plot, we conclude that there are roughly 12
distinct spectral endmembers. The corresponding endmember spectra for the
smoothest (endmember 1) and roughest (endmember 20) are plotted as Figures
3 & 4 and the corresponding spectral abundance images are plotted as Figures
5 & 6.
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Figure 4 : Roughest endmember
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Figure 3 : Smoothest endmember

Comparing the abundance images to the geological map above we con-
clude that the smoothest abundance image corresponds to kaolinite, while the
roughest image is clearly noise. Using the interactive convex hull estimation
technique described above, the authors succeeded in identifying 11 spectral
endmembers. These endmembers agree remarkably well with the endmembers
extracted by the associative network.
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Figure 6 : Abundances of roughest endmember
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Figure 5 : Abundances of smoothest endmember
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6. Conclusions

Spectral endmembers may be quickly and automatically extracted from a hy-
perspectral image by estimating linear combinations of the data which are spa-
tially homogenous. Good agreement is demonstrated with an interactive end-
member selection technique. A simple associative neural network with Hebbian
learning may be used to estimate the various linear combinations.

References

[1] Abrams, M. J., Ashley, R. P., Rowan, L. C., Goetz, A. F. H., and Kahle,
A.B., 1978, Mapping of hydrothermal alteration in the Cuprite Mining
District, Nevada using aircraft scanner images for the spectral region 0.46
- 2.36 mm: Geology, v. 5., p. 173 -718.

[2] Boardman, J. W., Kruse, F. A., and Green, R. O., 1995, Mapping target
signatures via partial unmixing of AVIRIS data: in Summaries, Fifth JPL
Airborne Earth Science Workshop, JPL Publication 95-1, v. 1, p. 23-26.

[3] Hebb, D. O., 1949, The Organization of Behaviour, Wiley.

[4] Kruse, F. A., Kierein-Young, K. S., and Boardman, J. W., 1990, Mineral
mapping at Cuprite, Nevada with a 63 channel imaging spectrometer:
Photogrammetric Engineering and Remote Sensing, v. 56, no. 1, p. 83-92.

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 99-104




