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Abstract. An e�cient procedure is proposed for initializing two-layer
perceptrons and for determining the optimal number of hidden neurons.
This is based on the Orthogonal Least Squares method, which is typical
of RBF as well as Wavelet networks. Some experiments are discussed, in
which the proposed method is coupled with standard backpropagation
training and compared with random initialization.

1. Introduction

A suitable and e�cient initialization procedure allows to set the initial values of
the weights of a network not far from the optimal values determined by training:
so doing, the training procedure takes a shorter time to reach the optimal values
and therefore considerable saving of computation time is achieved.

In networks design, great importance must be attributed also to a correct
choice of the number of hidden neurons, which helps avoiding problems of
over�tting and contributes to reduce the time required for the training without
signi�cantly a�ecting the network performance.

Usually in literature these problems are faced separately for each neural
paradigm, and very few are the attempts to apply techniques studied for a
particular kind of network to a di�erent paradigm. On the other hand, it has
been recently pointed out [1] [2] that most of the neural paradigms, such as
Multi-Layer Perceptron (MLP), Radial Basis Function (RBF) networks and
Wavelet Networks (WN) [3], can be viewed under a uni�ed perspective by
means of the Weighted Radial Basis Function (WRBF) paradigm. One of
the most important consequences of uni�cation is that some initialization and
training procedures studied for one particular neural paradigm could be applied
with slight modi�cations to the other paradigms.

The focus of this paper is on the initialization of two-layer perceptrons
and on the determination of the number of hidden neurons by applying the
Orthogonal Least Squares method (OLS) [4], which is typically used by RBF
networks as well as WNs.
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2. Initialization of Two-Layer Networks

The issue of function approximation can be seen as a non-parametric regression
problem, as there is no or very little a priori knowledge about the function to be
estimated. The model can represent a very large class of functions and contains
many free parameters which usually have no physical meaning in relation to
the problem. The model obtained with two-layer WRBF feedforward networks
with a linear output layer has the following form:

f(x) =
MX
i=j

aj � F
�
wT
j �m(x � cj) + bj

�
+ a0 (1)

where x 2 RN is the input vector; M is the number of hidden neurons, which
are identi�ed by a weight vector wj , a center vector cj and a bias bj ;�m(x�c)
is a vector in RN whose entries are (xj � cj) (j = 1; : : : ; N ) for m = 0 and
jxj � cj j

m for m 6= 0; F (z) is the activation function, which typically is a
sigmoidal or exponential function, as well as a radial wavelet.

In practical applications, a set of sample input-output pairs (xk;yk) (k =
1; : : : ;K) is given, which should be �t by the model and, due to the high non-
linearity in the input-output relation (1), the search for the optimal parameter
values require iterative numerical procedures.

The idea which lays behind the OLS algorithm (introduced in [4] for RBF
networks and adopted in [3] for WNs) is that, once m is chosen and wj , cj and
bj are �xed, the model (1) depends linearly on the parameters aj, which can
therefore be determined by the standard Least Squares (LS) method. Therefore
the problem is essentially divided in three steps:

� the construction of a library of candidate regressors (F (: : :)) for model
(1), namely a �nite set of scaled and translated versions of F (z), each
one associated with a set of parameters (wj ; cj ; bj);

� the selection of a reduced number M of these regressors on the basis of
the available sample data, by selecting among all the library functions
those which give the greatest contribution to the approximation;

� the determination of the weights aj of the output layer via LS technique.

The OLS procedure can lead to a sub-optimal solution, which can correspond to
a local (not global) minimum of the approximation error: this is not necessary
a drawback if the achieved error is small enough for the considered application.

2.1. Creation of the MLP Library

As far as standard RBF networks [4] are concerned, the creation of the function
library consists in centering a function with �xed spreading factor in each data
point; if the number of data is too large, suitable criteria must be applied to
eliminate some useless functions. In [3] an almost similar procedure is applied to

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 363-369



WN; in that case the library elements, generated by distributing the parameters
on a so-called dyadic grid, are grouped in levels on the basis of the dilation
parameters and the functions of each level are orthogonal to those belonging
to other levels (due to the properties of wavelet functions). Moreover, in [3]
a method for reducing library size is proposed, which eliminates the functions
of the library whose support contains less than a �xed number Np of sample
points. In practice, by support we mean the hyper-cubic subset of input space
where the function is higher than a given threshold.

In MLPs, internal activation is a linear combination of its inputs, which
means cj = 0 and m = 0 in (1), and F (z) is a hyperbolic tangent:

F (z) =
ez= � e�z=

ez= + e�z=
(2)

where  is a factor depending on the dimension of the input vector which helps,
together with the input normalization, to maintain the value of the neuron
activation within a limited range. We adopt  = 10N .

The parameters to be discretized are (wj ; bj): the weight vector a�ects the
direction and steepness of the hyperbolic tangent, while the bias determines
translation. In [5] an OLS-based initialisation procedure was alredy proposed
for MLP, but the weight vectors included in the library of candidate regressors
were randomly chosen and no attempt was made to determine an optimal
network dimension. The approach proposed here is a compromise between
those in [4] and [3]: for each sample point, a set of weight vector (distributed
on a regular lattice) is created depending on a integer parameter called for
analogy level.

In the proposed method, at level l, each vector entry assumes all the 2l odd
integer values in the range [�(2l � 1); (2l � 1)], while the admissible values for
the bias are all the 2l � 1 even integers in [�(2l � 2); (2l � 2)]. Such ranges
apply when the input values are scaled in the range [�1; 1].

In practice, it is not needed to consider opposite weight vectors, because
they introduce in the library two functions of opposite slope and identical
position on the input space and therefore obtainable by multiplying each other
by -1 (thanks to the symmetry of F (z)), therefore having �aj instead of aj in
the output layer. This is automatically handled by the Least Squares algorithm
(third step). As a consequence, the �rst entry of the input vector is bound to
assume only the 2l � 1 positive odd values in the range [1; (2l � 1)].

All possible combinations of biases and weights are considered, which means
NTOT = (2l � 1)2ln�1 possible sets of parameters (wj ; bj). The set of parame-
ters at level l contains also all the sets associated with the lower levels.

To select only the useful regressors among all library functions, one should
consider the \region of interest" (instead of the support) of the hyperbolic
tangent, namely the region where rF is not negligible, as in the other regions,
where the function is almost \at", sample points can lie everywhere without
a�ecting the evaluation of the model.

Thus, the procedure proposed in [3] can be adapted to hyperbolic tangent
functions: a library function is eliminated if less than Np sample points are
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L Np NTOT N M Initialization After 30s After 1200s
Tin (s) NRMSE NRMSE NRMSE

4 1 120 18 11 1 2:33 � 10�2 2:33 � 10�2 2:33 � 10�2

5 1 496 42 12 2 2:36 � 10�3 2:36 � 10�3 2:36 � 10�3

6 1 2016 90 12 1 2 � 10�2 2 � 10�2 2 � 10�2

7 1 8128 200 14 17 1:77 � 10�3 1:77 � 10�3 1:77 � 10�3

Random initialization 11 0.1 1.09 0.1 4:26 � 10�2

Random initialization 12 0.1 1.17 8:96 � 10�2 4:3 � 10�3

Random initialization 14 0.1 1.03 0.12 4:52 � 10�3

Table 1: Results of some experiments for approximating function (4); Tin is the time
required for initialization. The network performances are compared after initialization
and for two �xed values of CPU time elapsed.

such that the absolute value of the activation zj = (wT
j �m(x � cj) + bj)

associated with its parameters set is lower than . So doing, the standard fast
OLS procedure [4] can be applied to a restricted set of N < NTOT functions.

The regressors selection could be terminated when a maximum number of
functions is reached or when a minimum error value is obtained; a compromise
between model complexity and approximation accuracy is achieved with more
sophisticated stop criteria, such as to reach the minimum of the Akaike Final

Prediction Error [6], which is used in the experiments described below.

3. Numerical Results

In order to assess the performance of the proposed initialization method, some
experiments have been performed in which a standard MLP network is ini-
tialized and trained for function approximation; training is performed with
standard backpropagation.

As a performance index, we adopt the Normalized Root Mean Square Error

(NRMSE) de�ned as:

NRMSE =
1

�y

vuut
KX
j=1

[f(xj) � yj ]2 (3)

where �y is the standard deviation of f(x).
The �rst function we have worked on is:

g(x) = (x� 0:2)2cos[10(x� 0:3)2] + 0:4x (4)

200 samples uniformly distributed in [0; 1] have been used for initialization
and as training set, while the validation set is composed of 1000 uniformly
distributed samples.

Table 1 reports some results obtained with di�erent levels and Fig. 1 depicts
the original function and the network output after initialization for the second
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Figure 1: Function (4) (plain line) and its estimate (dots) after network initialization.

L Np NTOT N M Initialization After 1200s After 3000s
Tin (s) NRMSE NRMSE NRMSE

4 1 1920 232 17 60 0.127 0.127 0.127
5 1 15872 961 21 378 9 � 10�2 9 � 10�2 9 � 10�2

5 5 15872 960 30 683 6:33 � 10�2 6:33 � 10�2 6:33 � 10�2

Random initialization 17 0.3 1.2 9:26 � 10�3 6:5 � 10�3

Random initialization 21 0.3 1.08 9:9 � 10�3 7:71 � 10�3

Random initialization 30 0.3 1.21 1:12 � 10�2 6:03 � 10�3

Table 2: Results of some experiments for approximating function (5); Tin is the time
required for initialization. The network performances are compared after initialization
and for two �xed values of CPU time elapsed.

case of Tab. 1. As a comparison, Tab. 1 also presents the results obtained by
training similar networks with randomly initialized weights. For the same CPU
time elapsed, the performance of the networks initialized with the proposed
method are better than those achieved with traditional methods in most cases.

The second function has the following expression:

h(x; y) = (x2 � y2)e
x+y

2 + 2e�2[(x+:5)2+(y+:5)2] (5)

400 samples uniformly distributed in the square domain [0; 1]� [0;1] have been
used for initialization and as training set, while the validation set is composed
of 2500 uniformly distributed samples.

Table 2 reports some results obtained with di�erent levels and values of Np

and Fig. 2 depicts the original function and the network output after initializa-
tion for the third case of Tab. 2. As a comparison, Tab. 2 presents the results
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Figure 2: a) The function (5); b) its estimate after the network initialization.
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obtained by training similar networks with randomly initialized weights. In
the present case for randomly initialized networks the training is able to ob-
tain an error lower with respect to the network initialized with the proposed
method, which at once achieves low values of NRMSE but never receive (as in
the previous case) a signi�cant improvement from training.

4. Discussion and Conclusions

The paper proposes a novel method for initializing two-layer perceptrons, which
has been derived from procedures currently applied to RBF networks. The
results show that considerable saving of computation time is obtained without
greatly a�ecting the network performances. Moreover the number of hidden
neurons can be automatically chosen. Anyway, the proposed methodology
still presents some drawbacks: it seems not completely exempt from problems
deriving from local minima of the surface error, as well as random initialization,
even if the latter absolutely needs training in order to obtain acceptable values
of the NRMSE. The number of parameter vectors depends exponentially on
the input dimension; therefore, when many inputs are treated, memory and
computation power of the computer on which the procedure runs can heavily
limit the maximum level which can be considered. Moreover, in the procedure
of elimination of useless functions from the library, the number of sample points
covered by the \non at portion" of a single function cannot be determined in
a very e�cient way, as it happens in the case of RBF and WN. Future work
concerns these aspects of the initialization and has a twofold aim: to increase
the computation e�ciency and to study if there exist other criteria of selecting
a more limited but yet uniformly distributed set of weights vector.
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