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Abstract. This work compares a few attempts based on Neural and
Wavelet networks, for extracting the Jominy hardness pro�le of steels di-
rectly from the chemical composition. In particular, the paper proposes
a multi-networks architecture, where a �rst network is used as a para-
metric modeler of the Jominy pro�le itself, while a second one is used as
a parameter estimator from the steel chemical composition.

1. Introduction

Hardenability is one of the main features of steels: it is assessed by means
of the Jominy end-quench test [1], which produces a vector of hardness val-
ues measured along a specimen of heat-treated steel, at prede�ned positions.
These values represent the Jominy (hardness) pro�le and are provided by the
manufacturer to characterize steel quality.

Hardenability depends on chemical composition, which is normally analyzed
before or during the steel making process. Due to the complex and not yet well
understood chemical and physical processes involved, the non-linear relation-
ship between chemical composition and hardness is currently not known.

Several models have been developed [2] to predict the shape of Jominy
pro�les directly from chemical analysis without performing the real test. Most
of them are linear, but they are rather inaccurate.

Neural Networks and Wavelet Networks seem to cope well with such a
modeling problem. An attempt to apply Neural Networks to predict Jominy
pro�les has been made in [3] by using a standard Multi-Layer Perceptron with
one hidden layer but results were not very good.

This paper presents a more powerful method based on two combinedNeuro-
Wavelet Networks (NWNs), where one network provides a parametric model
of the Jominy pro�le, while the second one predicts the parameters for the �rst
one as a function of chemical composition. The extracted parameters do have
a strong relationship with the Jominy pro�le (of which they are a compact
representation) and they are also useful to classify steels.

This work has been partially supported by the Italian National Research Council project
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Figure 1: a) A few examples of Jominy hardness pro�les for three steel qualities.
b) Comparison with estimated Jominy pro�les.

2. Jominy Pro�les and Preprocessing

Real industrial data were available for three di�erent qualities of Boron steels [2].
Figure 1.a shows a few examples of their typical Jominy pro�les (observe re-
semblance with a sigmoid). Associated with each pro�le, we have the chemical
analysis indicating the content of several micro-alloying elements.

Throughout this work, we consider as input variables the content Ci of 17
chemical components: C, Mn, Si, P, S, Cr, Ni, V, Mo, Cu, Sn, Al, Ti, B, N,
and soluble Al and B. We call:

� ~N
�
= f C1

C1;max

; C2
C2;max

; : : : ; C17
C17;max

; g 2 <17 the vector of normalized chemical

composition, where Ci;max is the maximum of Ci over the training set;

� J(x), the Jominy pro�le as a function of distance x from quenched end.

� ~J 2 <15, the Jominy vector containing the values of J(x) at 15 (some-
times, 18, or 19) prede�ned positions (often, x = 1:5, 3, 5, 7, 9mm, etc.).

To reduce the size of the NWNs used, we tried to reduce as much as pos-
sible the number of input variables to the network, without loosing signi�cant
information, by means of Principal Component Analysis [5]. By retaining the
6 largest eigenvalues, we feed into the NWNs a 6-D vector

~V = ~N �M (1)

where M is a matrix containing as columns the 6 principal eigenvectors.
As a performance index for all NWNs, we adopt the Normalized Root Mean

Square Error (NRMSE) [7]:

� =

vuut
PM

p=1

PN

j=1(ŷ
p
j � y

p
j )

2

PM

p=1

PN

j=1(y
p
j � y)2

where y =
1

NM

MX
p=1

NX
j=1

y
p
j (2)

where M and N are, respectively, the number of samples in the training (or
validation) set and the number of network outputs; ypj is the j-th component

of the p-th output vector ~Y p in the training (or validation) set, while ŷpj is the
corresponding network estimate.
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Figure 2: Block diagram of the parametric neuro-wavelet estimator.

3. Parametric Estimation of Jominy Pro�les

Let us draw some preliminary considerations on traditional approaches [2, 3]:

� the number of network outputs equals the number of measured Jominy
points, namely 15, 18 or 19. But �gure 1.a shows that pro�les are very
smooth. Adjacent values are strongly correlated (� � 0:93), so are also
the weight vectors of adjacent neurons (redundant information).

� Approximation errors can produce estimates of the Jominy pro�les which
are physically not plausible (for instance, small local increases of hardness
instead of a monotone decrease).

� The number of points and positions where hardness is measured are not
evenly distributed and often di�er among di�erent manufacturers, there-
fore Jominy pro�les cannot always be compared directly.

� Hardness measurement ~J is often a�ected by large errors.

For all these reasons, we have decided to essay a completely di�erent approach,
as sketched in �g. 2. Our system is composed of three interacting blocks:

1. A small 1-in, 1-out NWN (network A), used as a parametric model of
the Jominy pro�le, which is a function J(x). The set of free parameters

of network A (weights, centers and biases) constitutes a vector ~P , which
uniquely identi�es a Neuro-Wavelet estimate Ĵ(x) of the Jominy pro�le

J(x) and, consequently, of ~J .

2. An a-posteriori model corrector described in section 3.1.

3. A larger NWN (network B), used as a parameter estimator which predicts

the parameter vector ~P (instead of the pro�le itself) as a function of

chemical composition ~C (namely, vector ~V).

This approach has the following advantages:

� the size of the parameter vector ~P is much smaller than that of ~J (see
table 1), therefore network B is smaller than would be a network predict-

ing ~J ; a smaller training set will su�ce, and training and computation
times are reduced.
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Name 1st layer 2nd layer size NRMSE (%)

type F (z) neu type F (z) of ~P �av �co

MLP-1 WRBF-0 hyp. tang. 1 WRBF-0 lin. 4 10.16 4.89
MLP-2 WRBF-0 hyp. tang. 2 WRBF-0 lin. 7 6.76 3.90
LINy WRBF-0 hyp.tan.+lin 2 WRBF-0 lin. 5 9.37 4.85
WAV-1 WRBF-2 Mex. hat 1 WRBF-0 lin. 3 16.40 8.53
WAV-2 WRBF-2 Mex. hat 2 WRBF-0 lin. 5 16.08 8.14

RBF-1 WRBF-2 Gaussiany 1 WRBF-0 lin. 3 11.61 6.11

RBF-2 WRBF-2 Gaussiany 2 WRBF-0 lin. 5 9.29 4.97

Table 1: Approximation error (NRMSE) of network A alone, obtained with the
proposed NWNs, trained with random initialization and Backpropagation for
1000-5000 epochs. y LIN is a hybrid network (1 lin. plus 1 hyp.tan. neuron in
the hidden layer).

� ~P can be made less sensitive to measurement noise than ~J (see sec-
tion 3.1.), therefore steel characterization will be more robust.

� ~P can also be computed when some measurements of ~J are missing and
it is almost independent of the position of hardness measurements.

� ~P is as representative of the physical process as ~J , therefore it can be
used to classify (more robustly) steel quality.

3.1. Choice of the Parametric Model (Network A)

The choice of the best NWN for network A (parametric model) is by itself not
a simple problem, due to the need of reducing as much as possible the number
of tunable parameters while maintaining a good estimation and classi�cation
accuracy. We have therefore essayed a set of very small two-layers WRBFs [4].

Table 1 (column �av) compares the di�erent models analyzed. The values
given are an average over the whole data set (615 di�erent specimen).

By looking at the outputs of networks A in details, we have observed that
the estimation error of each element of the Jominy pro�le predicted by network
A does not have a null average, and the average itself varies with distance x. We
have therefore decided to subtract this average modelization error (in tabular
form) from the output of network A (a-posteriori correction), as shown in �g. 2.
This has reduced the modelization error roughly by a factor 2, as indicated in
table 1 (column �co).

We have then selected two networks (namely, MLP-1 and LIN), according
to the following criteria:

1. to have the smallest approximation error. Networks MLP-1, MLP-2, LIN
and RBF-2 are the best under this respect, thanks to the particular shape
(nearly sigmoidal) of the Jominy pro�le.

2. To have as few parameters as possible. This reduces both training time for
network A and the size of network B. Networks WAV-1, RBF-1, MLP-1
are the best under this respect.
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3. To have a set of parameters which are as representative as possible of the
physical process of hardening. The degree of representativity has been
assessed by analyzing the correlation between pairs of Jominy vectors ~J
and the corresponding parameter vectors ~P. The closer two pro�les ~J are
to each other, the closer parameters ~P should be. Networks MLP-1 and
LIN networks are the best under this respect (results not shown here).

4. To have a set of parameters which provide the smallest noise sensitivity,
namely the smallest sensitivity to the noise a�ecting hardness measure-
ments. That is assessed by measuring the e�ects of random noise, su-
perimposed to the measured data, on the parameters and consequently
on the reconstructed pro�le. Simulations (not shown here) proved that
noise on the reconstructed pro�le is less than 50% of measurement noise.
Networks LIN, WAV-1, MLP-1 and EXP-1 are better under this respect.

4. Parameter Estimation (Network B)

>From the 6 principal components ~V of chemical composition ~N , network B (see

�g. 2) should predict a set of parameters ~P characterizing the corresponding
Jominy pro�le. The issue of choosing the most suitable network to perform
this association is a problem of approximating an unknown non-linear function
<6 ! <4, or <6 ! <5, respectively for an MLP-1 and a LIN network A.

We have tested di�erent kinds of two-layer networks, namely Wavelet Net-
works (WAVs), Multi-Layer Perceptron (MLPs) and Radial Basis Functions
(RBFs) with Mexican hat, hyperbolic tangent and Gaussian activation func-
tions, respectively [4], and with di�erent number of neurons in the hidden layer.
Initialization is either random (for MLPs) or OLS [6] (for WAVs and RBFs).

Training and validation sets contain 615 and 152 samples, respectively, dis-
tributed over the three considered qualities. As the work is still going on, we
are collecting more data that will be inserted only in the validation set.

Table 2 shows the results on the validation set for di�erent types of network
B. For both MLP-1 and LIN networks A, the table gives: the NRMSE on
parameter estimation �par, which depends on network B alone; the NRMSE
on Jominy vector estimation, with (�co) and without (�av) the a-priori model
correction shown in �g. 2. The latter two depend on both networks (A and
B). The last column of the table gives, as a comparison, the NRMSE obtained
with only one network (with 15 outputs) predicting the Jominy vector directly
as a function of chemical composition (traditional approach).

WAV networks with 4 wavelons, associated with the corrected LIN network
A gives the overall best performance. Comparable results can be achieved with
RBF+LIN and WAV+MLP-1 networks. MLP are the worst among all.

Also the unique network (traditional approach, last column) gives compara-
ble results. This proves that our approach gives performance comparable with
other existing methods, but o�ers the several advantages outlined in section 3.
which are very worthy in real industrial applications.
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Network B hid MLP-1 LIN 1 net
neu �par(%) �av(%) �co(%) �par(%) �av(%) �co(%) �(%)

WAV 2 3.66 18.4 15.2 3.42 18.20 15.8
WAV 4 3.53 18.3 15.1 3.49 16.39 13.5 13.9
WAV 8 3.45 17.5 13.7 3.49 16.24 13.6 13.4
WAV 16 3.59 16.8 13.6 3.59 16.46 13.8 13.7

RBF 2 3.43 18.5 15.9 3.40 18.3 16.0
RBF 4 3.48 18.5 15.6 3.52 16.7 14.5 14.1
RBF 8 3.42 18.7 16.2 3.43 16.3 14.0 14.0
RBF 16 3.50 17.0 13.9 3.47 16.5 14.0 14.1

MLP 2 3.46 19.6 17.1 3.37 19.0 17.0
MLP 4 3.53 19.4 16.8 3.40 42.0 36.5 14.3
MLP 8 3.46 71.6 66.8 3.42 47.5 43.6 13.8
MLP 16 3.36 39.5 37.6 3.99 26.5 25.3 15.0

linear model [2] � = 39:4%

Table 2: Overall performance (NRMSE) on the validation set. Last column
gives results obtained with traditional neural methods [3].

Table 2 (last row) also compares our results with those achieved by the
linear model for Boron steels proposed in [2], which provides a much higher
NRMSE than our method. Furthermore, the validity of that linear model
is guaranteed only when the concentration of certain chemical components is
within very restrictive ranges.

Figure 1.b compares a measured Jominy pro�les with the corresponding
prediction, for the proposed and the linear methods. This con�rms that, in
practical cases, the neuro-wavelet parametric approach can be a more e�ective
and reliable alternative to traditional models.
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