
A Comparison of Three PCA Neural
Techniques

Simone Fiori and Francesco Piazza �

Dept. Electronics and Automatics { University of Ancona, Italy
E-mail: simone@eealab.unian.it

Abstract. We present a comparison of three neural PCA techniques:

the GHA by Sanger, the APEX by Kung and Diamataras, and the {

APEX �rst proposed by the present authors. Through numerical simu-

lations and computational complexity evaluations we show the {APEX

algorithms exhibit superior capability and interesting features.

1. Introduction

Performing the Principal Component Analysis (PCA) of a stationary multivari-
ate random process means computing the eigenvectors of its covariance matrix
corresponding to the largest eigenvalues, and the projection of the samples of
the multivariate process on the eigenvectors to obtain a number of principal
components. Since the pioneering work of Prof. Oja and his research group,
on-line estimation of principal components by linear neural networks has be-
come an important research �eld (see for instance [1, 4, 5, 6, 8] and references
therein) both for the interesting implications on unsupervised learning theory
and applications to neural signal processing [2].

Over the recent years, several neural structures and learning rules for per-
forming PCA have been proposed. In this paper we consider two of them:
the well-known Generalized Hebbian Algorithm (GHA) by Sanger [7] and the
Adaptive Principal-component Extractor (APEX) by Kung and Diamantaras
[2], with the aim to compare their performances and structure complexity to
those exhibited by an algorithm�rst proposed by the present authors in [3] as an
improvement of APEX. Here we briey recall the three techniques and illustrate
their properties through numerical simulations on theoretically-representative
problems, comparing also their computational complexity.

�This research was supported by the Italian MURST.

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 275-280

2. Three PCA neural techniques

2.1. The laterally-connected network and APEX rule

Kung and Diamantaras developed a learning rule for Rubner-Tavan's Principal
Component neural network described by the following input-output relation-
ships:

z(t) =WT (t)x(t) and y(t) = z(t) +HT (t)y(t) : (1)

The input vector x(t) 2 Rp, the output vector y(t) 2 Rm (with m � p, arbi-
trarily �xed), the direct-connection p�m weight-matrixW(t) and the lateral-
connection m � m strictly upper-triangular weight-matrix H(t) are intended
to be evaluated at the same temporal instant t, as a discrete-time index. The
columns ofW and H are named in the following way: W = [w1 w2 � � � wm],
H = [0 h2 � � � hm]. The Kung-Diamantaras' APEX learning rule for the
weight-matrixW and the lateral inhibitory weight-matrix H are:

W(t+ 1) =W(t) + �[X(t) ~Y(t)�W(t) ~Y2(t)] ; (2)

H(t+ 1) = H(t) � �SUT[Y(t) ~Y(t)]� �H(t) ~Y2(t) ; (3)

where � is a positive learning rate, X is a p �m matrix, Y and ~Y are m �m
matrices de�ned by:

X
�
= [x x � � � x| {z }

m

] ; Y
�
= [y y � � � y| {z }

m

] ; ~Y
�
= diag(y1; y2; : : : ; ym) ;

and operator SUT[�] returns the strictly upper-triangular part of the matrix
contained within. Kung and Diamantaras were able to prove the convergence
of the above network, under some conditions and in the mean sense [2, Theorem
4.3], to a Principal Component analyzer.

2.2. The {APEX class

A PCA transformation is such that the transformed signals z(t) =WT (t)x(t)
are characterized by maximum variance. Furthermore, we know that any
unique PCA vector wk must be orthogonal with respect to each other and
must exhibit unitary norm. These targets can be thought of as separate objec-
tives to be attained by means of the laterally-connected neural network. In [3]
we proposed to adapt the direct-connection weight-matrixW to maximize the
powers of the transformed signal by means of the following learning rule:

W(t + 1) =W(t) + �(X(t) ~Y(t) �W(t) ~Y(t)~Z(t)) ; ~Z
�
= diag(z1; z2; : : : ; zm) ;

(4)
and to adapt the lateral-connection weight-matrixH only, in order to decorre-
late the components of vector y, according to the following rule:

H(t+1) = H(t)��SUT[Y(t) ~Y(t)]��H(t) ~	(t) ; ~	
�
= diag(1; 2; : : : ; m); (5)

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 275-280

where the k are arbitrary functions of the yk, that at least guarantee the
stability of the network [3]. The choice of these free functions has been discussed
in [3] under the assumption that for each neuron it holds k(yk) = (yk), and in
this paper some examples are given in the Section dedicated to the algorithm
comparison. A learning rule with the structure (4)-(5) with a generic is
termed {APEX. It is worth to note that y2{APEX is very similar to, but is
not the same algorithm as, the original APEX. However, asH! 0 also ~Z! ~Y,
thus these algorithms asymptotically behave in the same way, therefore we call
APEX{like the former since it closely resembles the pair (2)-(3).

2.3. The GHA rule

The Generalized Hebbian Algorithm by Sanger [7] is one among the best known
learning algorithms that allow a neural network to extract a selected number
of principal components from a multivariate random process. It applies to a
single-layered feedforward neural network that may be described with the usual
notation as z(t) =WT (t)x(t). The GHA rule writes:

W(t+ 1) =W(t) + �(x(t)zT (t) �W(t)LT[z(t)zT (t)]) ; (6)

where � is a positive learning stepsize and operator LT[�] returns the lower-
triangular part of the matrix contained within.

3. Numerical and structure comparison

3.1. Computer simulations

In this Subsection, simulation results obtained by using Sanger's GHA [7],
standard APEX [2] and new algorithms belonging to the {APEX class are
shown and discussed. Such PCA algorithms have been run with a network
input signal x = Qs, where Q is a p � p orthonormal matrix (QTQ = I)
randomly generated, and s is an array of p mutually uncorrelated zero-mean
random signals sk endowed with di�erent powers �2k = E[s2k]. Signals sk are
placed in s so that their powers appear in descending order, i.e. �2k > �2` if
k < `. This implies that the �rst m Principal Components of x (with m < p)
are the �rst m column-vectors of Q. Each algorithm starts with the same
initial conditions: random with a normal distribution for W and null values
for H. In order to compare the algorithms in term of convergence speed, we
use as measure of convergence an estimate of the averaged reconstruction error
(r.e.) kek2 = kx �WWTxk2 as in [2]. As an estimate, at any time-step t we
use the expression 1

t

Pt

�=0 kx(�) �W(�)WT (�)x(�)k2 that after convergence
approximates E[kek2] if t is large enough.

The �rst two simulation results are shown for a neural network with p = 16
and m = 4. Twenty data sets containing 5000 samples each have been gen-
erated and ten values of learning stepsize equally spaced within [0:0001; 0:001]
have been used so that the network has been trained in 200 di�erent situations.

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 275-280

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30
Reconstruction Error

steps(*10) gha=point apex=solid |y|−apex=dotted 0−apex=dashdot |y|2−apex=dashed

Av
era

ge
d R

ec
on

. E
rro

r

Figure 1: Averaged r.e. in the good eigenvalue spread case.

0 50 100 150 200 250 300 350 400 450 500
4

6

8

10

12

14

16

18

20

22
Reconstruction Error

steps(*10) gha=point apex=solid |y|−apex=dotted 0−apex=dashdot |y|2−apex=dashed

Av
era

ge
d R

eco
n.

Err
or

Figure 2: Averaged r.e. in the poor eigenvalue spread case.

The �rst experiment covers the good eigenvalue spread case, where eigenvalues
�2k are drawn from the law �2k = 22�k. Figure 1 shows the averaged r.e. for the
GHA, APEX jyj{APEX, 0{APEX and y2{APEX algorithms. Figure 2 shows
instead the results obtained in the poor eigenvalue spread case where the data
set de�ned as in [2] has been used. Simulations show that in the good eigen-
value spread case the new algorithms behave better than the APEX even if they
are slower than the GHA. In the poor eigenvalue spread case, that is a more
di�cult problem, the �ve algorithms exhibit almost the same performances.
We noted that as the learning rate � increases, the behavior of GHA, y{APEX
and 0{APEX tends to be more and more similar, while original APEX remains
considerably slower.

In order to improve the performances of the APEX and APEX{like algo-
rithms, it is possible to embed into the learning equations (2)-(3) and (4)-(5)
a mechanism that varies the stepsize � during the learning phase. Here we
used the variable learning rate �k(t+ 1) = �k(t)=(+ �k(t)y2k(t)) suggested by
Kung and Diamantaras [2], with = 0:99. Figure 3 shows the reconstruc-
tion error, in the good eigenvalue spread case, averaged over 20 data sets, for

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 275-280

0 10 20 30 40 50 60 70 80 90 100
5

10

15

20

25

30

35

40
Reconstruction Error

steps(*50) gha=point apex=solid |y|−apex=dotted 0−apex=dashdot y2−apex=dashed

Av
era

ge
d R

ec
on

. E
rro

r

Figure 3: Averaged r.e. in the good eigenvalue spread case, self-controlled
learning stepsizes.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30
Reconstruction Error

steps(*50) gha=point apex=solid |y|−apex=dotted 0−apex=dashdot y2−apex=dashed

Av
era

ge
d R

eco
n.

Err
or

Figure 4: Averaged r.e. in the poor eigenvalue spread case, self-controlled learn-
ing stepsizes.

�init = 0:001. This result con�rms that employing a self-controlled learning
rate the performances of the new algorithms may be better than the GHA
algorithm. Figure 4 refers instead to the poor eigenvalue spread case. Here
�init = 0:0005. In this situation the use of a non-constant learning rate makes
the speed of the -algorithms comparable to that of the GHA.

3.2. Structure comparison

As a further element of this discussion, Table 1 provides an estimate of the
architectural complexity of the neural networks in terms of the number of
elementary operations, as required by the corresponding learning rules and to
implement networks' input-outpur relationships, with respect to the input (p)
and output (m) sizes. Here an \operation" is intended as a product eventually
followed by a sum. These three algorithms are listed in order of decreasing
complexity. The 0{APEX one exhibits the lowest complexity degree in this
comparison.

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 275-280

Algorithm Complexity (Number of operations)

GHA 2pm+ 0:5(m2 +m)(p + 1)
APEX 3pm + 2m2 +m

y2{APEX 3pm + 2m2 +m

0{APEX 3pm+ 1:5m2 + 0:5m

Table 1: Complexity comparison.

4. Conclusion

The aim of this paper was to present a fair comparison among three neural PCA
techniques: the GHA and APEX found in the literature and the {APEX �rst
proposed by the present authors. Numerical simulations and structure com-
plexity evaluations show the members of the {APEX class exhibit interesting
features. Prospective applications of the new algorithms are on image com-
pression [7] and adaptive �ltering [2]. Extensions of the proposed methods to
non-linear PCA [5] for Blind Source separation are also under investigation.

References

[1] P.F. Baldi and K. Hornik, Learning in neural networks: A survey,
IEEE Trans. on Neural Networks, Vol. 6, No. 4, pp. 837 { 858, July 1995

[2] K.I. Diamantaras and S.Y. Kung, Principal Component Neural Net-
works: Theory and Applications, J. Wiley & Sons, 1996

[3] S. Fiori, A. Uncini, and F. Piazza, A new class of APEX{like PCA

algorithms, Proc. of Int. Symposium on Circuits and Systems (IEEE-
ISCAS), Vol. III, pp. 66 { 69, 1998

[4] K. Hornik and C.-M. Kuan, Convergence analysis of local feature ex-

traction algorithms, Neural Networks, Vol. 5, pp. 229 { 240, 1992

[5] J. Karhunen, Optimization criteria and nonlinear PCA neural networks,
Proc. of International Conference on Neural Networks (ICNN), pp. 1241
{ 1246, 1994

[6] F. Palmieri, J. Zhu, and C. Chang, Anti-Hebbian learning in topo-

logically constrained linear networks: A tutorial, IEEE Trans. on Neural
Networks, Vol. 4, No. 5, pp. 748 { 761, Sept. 1993

[7] T.D. Sanger, Optimal Unsupervised Learning in a Single-Layer Neural

Network, Neural Networks, Vol. 2, pp. 459 { 473, 1989

[8] A. Weingessel and K. Hornik, SVD algorithms: APEX-like versus

Subspace Methods, Neural Processing Letters, Vol. 5, pp. 177 { 184, 1997

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 275-280

