
A Multiplicative Updating Algorithm for
Training Support Vector Machines

Nello Cristianini, Colin Campbell
Department of Engineering Mathematics,

University of Bristol, UK
fnello.cristianini,c.campbellg@bris.ac.uk

John Shawe-Taylor
Department of Computer Science, Royal Holloway College, UK

jst@dcs.rhbnc.ac.uk

Abstract. Support Vector Machines �nd maximal margin hyperplanes

in a high dimensional feature space, represented as a sparse linear com-

bination of training points. Theoretical results exist which guarantee a

high generalization performance when the margin is large or when the

representation is very sparse. Multiplicative-Updating algorithms are

a new tool for perceptron learning which are guaranteed to converge

rapidly when the target concept is sparse. In this paper we present a

Multiplicative-Updating algorithm for training Support Vector Machines

which combines the generalization power provided by VC theory with

the convergence properties of multiplicative algorithms.

1. Introduction

Multiplicative-updating algorithms are a relatively new technique for training
perceptrons. They were �rst introduced by Littlestone (with his work on Win-
now [6]) and Warmuth, and further studied and developed by others [4]. In
this approach, weights are modi�ed by a multiplicative factor rather than an
additive correction. This is equivalent to performing standard gradient descent
in a di�erent space, obtained by taking the logarithm of the weight vector.
This strategy is known to perform particularly well in the case of sparse target
concepts, i.e. when many of the weights of the target perceptron are set to zero
[4, 6].

In this paper we propose a multiplicative updating rule which �nds a large
margin perceptron in the feature space of Support Vector Machines (SVMs).
SVMs can perform complex classi�cation tasks by using a nonlinear function
� to map training points, xi, to a high-dimensional space (called the Feature

Space) where the dataset is linearly separable. By �nding the maximal separat-
ing hyperplane in Feature Space good generalisation is ensured [8]. Moreover
the representation of the solution is frequently sparse in the space where the
optimization is performed. We briey describe Support Vector Machines in the

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 189-194



next section and a multiplicative rule for training them in Section 3. Experi-
mental results on real and arti�cial datasets are presented in section 4.

2. Support Vector Learning Algorithms

Hyperplanes can be represented in Feature Space by means of kernel functions
which represent the dot products between mapped pairs of input points:

K(x0; x) =
X
i

�i(x
0)�i(x)

Examples of particular kernel functions are Gaussians and polynomial kernels:

K(x; x0) = e�jjx�x0jj2=2�2

K(x; x0) = (hx; x0i+ 1)d

Given p input points xi and corresponding targets yi (where yi = �1), the
learning task amounts to �nding the �i which maximise the Lagrangian:

L(�) =

pX
i=1

�i �
1

2

pX
i;j=1

�i�jyiyjK(xi; xj) (1)

subject to constraints �i � 0 and
Pp

i=1 �iyi = 0. Only those points which lie
closest to the hyperplane have �i > 0 (the rest have �i = 0) and these are the
support vectors which are therefore the most informative patterns in the data.
The resulting decision function can then be written:

f(x) = sign

 X
i2SV

�oi yiK(x; xi) + �

!
(2)

where �oi are the �i found after maximising L(�) and SV represent the indexes
of the support vectors only (� is the bias).

Suppose inputs are drawn independently according to a distribution on
a domain X , and let c be any concept in X . Then, the probability that a
consistent hypothesis generated by d support vectors has error larger than � is
upper bounded by:

dX
i=1

�
p

i

�
(1� �)p�i

which implies the following upper bound (with con�dence 1 � �) for the test
error of a consistent hypothesis consisting of d support vectors [5]:

� �
1

p� d

�
d log2

�ep
d

�
+ log2

�p
�

��
Thus concepts which are sparse with few support vectors in the feature

space are associated with good generalisation.

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 189-194



3. A Multiplicative Learning Algorithm for

Training Support Vector Machines.

Experimental and theoretical results indicate that multiplicative updating
rules converge faster than the traditional additive corrections of gradient de-
scent techniques when the perceptron to be learned has many weights set to
zero and is therefore sparse [4]. For general target functions, however, additive
and multiplicative updatings have been proved to be incomparable: depending
on the unknown target function, each can be faster or slower than the other.

In general a multiplicative learning algorithm has a weight vector wt, and
its predictions are yt = wt � xt. The update rule is:

wt+1;i = wt;ie
��

@L(wt)
@wt;i

where L(wt) is the chosen loss function to be minimized.
For Support Vector Machines we wish to maximise the function: W(�) =

L(�) � �
P

i �iyi, where L(�) is the Lagrangian given in equation (1) and the
second term implements the constraint

Pp
i=1 �iyi = 0. Furthermore maximi-

sation of W(�) must observe the constraints: �i � 0. For many datasets
the vector � will be sparse with only a small fraction of training points posi-
tioned close to the separating hyperplane and therefore constituting support
vectors. This suggests that a multiplicative algorithm should be e�cient for
many datasets.

The partial derivative of W with respect to � is

@W(�)

@�k
= 1� k � �yk with k = yk

pX
i=1

�iyiK(xi; xk):

The updating rule for the �k is hence:

�k  �ke
�(1�k��yk)

The value of � can be obtained by imposing satisfaction of the constraintP
i �iyi = 0 throughout. The �nal value of � can be identi�ed with the bias,

�, in (2). This condition becomes
P

k(�ke
�(1�k��yk))yk = 0 and yields:

e�� =

vuutPk2fpositiveg �ke
�(1�k)P

k2fnegativeg �ke
�(1�k)

A convenient initialization can be obtained by choosing �i > 0 such that:X
i

�iyi = 0

is satis�ed. For example if Np = jfyi > 0gj is the number of positively labelled
data points and Nn = jfyi < 0gj the number of negatively labelled points then:

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 189-194



�i = 1=Np for yi>0

�i = 1=Nn for yi � 0

The multiplicative updating algorithm is therefore:

� Initialize �

� For epoch = 1 to T

{ For i = 1 to p calculate: i = yi
P

k �kykK(xi; xk) endfor

{ Calculate: � = 1
2�

�
log
P

k2pos �ke
�(1�k) � log

P
k2neg �ke

�(1�k)
�

{ For i = 1 to p: �i  �i exp (�(1� i � �yi)) endfor

� endfor

3.1. Analysis of Convergence

A theoretical analysis shows that the same convergence properties of
Multiplicative-Updating algorithms also apply to multiplicative SV machines
(see [1] for the proof): when there are few support vectors they outperform
classical gradient descent. In the bounds given in Corollaries 3.3 and 3.4 of [1],
after a certain sequence S of updates the value of the objective function falls
within a di�erence " from the optimal. Both the bound for gradient descent
and the one for multiplicative updatings involve a

p
jSj in the denominator -

hence we get the same rate of convergence in both cases - the di�erences lying
in the constants involved. The comparison of the two algorithms then involves
comparing the form of the two ":

"GD =
pp
jSj
j����0j

�
1 +

R2

2

�
"MU =

2


p
jSj

vuut�1 + R2

2

� pX
i=1

�i ln

�
��i
�0i

�

where �� is the optimal solution and �0 is the initial point. The MU factor
is signi�cantly smaller than the GD when we have a sparse �� (i.e. few support
vectors). Thus for an equivalent number of epochs, the multiplicative algorithm
goes much closer to the optimal point than an additive algorithm if the number
of support vectors is small. See [1] for futher details.

4. Experimental Results

We have evaluated the performance of the algorithm on four classi�cation
datasets. For classi�cation with binary-valued inputs we have used the ma-
jority rule and the mirror symmetry problem as examples. For classi�cation

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 189-194



datasets with analogue inputs we have used real-life datasets, namely, the sonar
classi�cation task of Gorman and Sejnowski [3] and the Wisconsin breast cancer
dataset [7].
4.1. Majority Rule. The majority rule is a straightforward binary classi�ca-
tion task in which the inputs have binary-valued components �1 and the target
is +1 if the majority of bits in the input string are +1 with the output is a �1
otherwise. For bit strings of length 40 and 200 training instances the �gures
below display the margin (Fig. 1(left)) and generalisation error (Fig. 1(right):
500 test examples were used) versus the number of epochs (for � = 5:0). The
training error reached 0 in the second epoch.

-0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 50 100 150 200 250 300 350 400 450 500

Figure 1: Margin evolution (left) and generalisation error vs number of epochs
(right) for the Majority Rule

4.2. Mirror Symmetry Problem. For the mirror symmetry problem the
output is a 1 if the input pattern is exactly symmetrical about its centre,
otherwise the output is a �1 (the input patterns have components �1). For
� = 5:0, 200 training instances and inputs with 30 component values, the
margin evolution (against number of epochs) is illustrated in Fig. 2(left). The
�nal generalisation error was 0.0455 (or 95.5% generalisation) on a test set of
10,000 (allowing repetitions).

-0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0 500 1000 1500 2000

Figure 2: Margin evolution: mirror symmetry problem (left). Generalisation
error vs number of epochs: sonar classi�cation experiment(right)

4.3. Sonar classi�cation experiment. For the aspect-angle dependent

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 189-194



sonar classi�cation problem of Gorman and Sejnowski [3] the 208 instances are
equally divided into a training and test set. For � = 1:0 the �nal generalisation
performance was 92.31% (Fig. 2(right)) which exceeded the maximum perfor-
mance of 90.4% reported by Gorman and Sejnowski for a multi-layered neural
network trained with the Back-Propagation algorithm and using a variable
number of hidden nodes.
4.4. Wisconsin Breast Cancer Dataset. The Wisconsin breast cancer
dataset[7] contains 699 patterns with 9 attributes. There are 16 instances
with missing values which we discarded from the training and test sets. With
� = 1:0, a training set of 550 and test set of 133 instances we obtained a gener-
alisation of 95.56% which compares favourably with results presented elsewhere
[7]. The training error fell to 0 at the end of the �rst epoch.

We have veri�ed that the solution obtained is identical to that for a Sup-
port Vector Machine trained using a Quadratic Programming (QP) algorithm.
Furthermore, the algorithm presented here can be readily extended to handle
regression. However, the choice of the learning rate � remains unclear: if �
is too large, the algorithm does not converge, too small and it is slow to con-
verge. Currently the algorithm is slower than conventional QP algorithms for
this reason but this issue may be resolved with further research.

References

[1] Cristianini N., Campbell C,. Shawe-Taylor J., Multiplicative Updatings for
Support Vector Machines; Neurocolt Technical Report; www.neurocolt.com

[2] Friess T., Cristianini N., Campbell C., The Kernel-Adatron: a Fast and
Simple Learning Procedure for Support Vector Machines. In Shavlik, J.
(ed), Proceedings of the Fifteenth International Conference on Machine

Learning, 1998, p. 188-196.

[3] Gorman, R.P. and Sejnowski, T.J., Neural Networks, 1(1988) p. 75-89.

[4] Kivinen, J. and Warmuth, M., Journal of Information and Computation,
vol. 132, no. 1, pp. 1-64, 1997

[5] Littlestone, N. and Warmuth, M., Relating Data Compression and Learn-
ability, unpublished manuscript, University of California Santa Cruz, 1986.

[6] Littlestone, N., Machine learning, 2:285-318, 1994

[7] Ster, B. and Dobnikar, in A. Bulsari et al. (ed.), Proceedings of the Inter-

national Conference EANN'96, 1996, p. 427-430.

[8] V.Vapnik, The Nature of Statistical Learning Theory, Springer Verlag 1995

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 189-194




