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Abstract. We present a theoretical study of the properties of a class of

Support Vector Machines within the framework of Statistical Mechanics.

We determine their capacity, the margin, the number of support vec-

tors and the distribution of distances of the patterns to the separating

hyperplane in feature-space.

1. Introduction

In this paper we investigate the learning properties of Support Vector Ma-
chines (SVMs) with the tools of Statistical Mechanics. We restrict to a class of
non-linear mappings between the input and the feature-space that include, as
a particular case, the quadratic SVM. We consider learning of random input-
output relations, to determine the typical capacity (the maximum number of
learnable patterns), and learning of tasks that are linearly separable (LS) in
input space, to analyse the generalization performance. We �nd that the ca-
pacity is proportional to the feature-space dimension. As long as the training
set size remains below the machine's capacity, the margin and the number of
SVs increase with the feature-space dimension. The generalization error on LS
tasks learned using non-linear feature spaces increases with the complexity of
the feature space due to entropic e�ects. The paper is organized as follows: in
section 2, we describe the SVMs and the particular feature-space considered.
We present the replica calculation with our main results in section 3 and our
conclusions in section 4.

2. The feature-space

We assume that we are given a set of P training patterns in a N -dimensional
space. The input vectors x� (� = 1; � � � ; P ) are supposed to be drawn with a
probability density P (x) = (2�)�N=2 exp

��x2=2�. Their corresponding classes
are y� = �1. The aim is to map the input space to a feature space where the
training set is LS. We consider the following non-linear mapping:
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x �! � (x) � f�0x; �1x; � � � ; �kxg ; (1)

where �0 � 1, and the �i (1 � i � k) are odd functions �i = �(�i) of �i � x�Bi,
with the Bi (i = 1; � � � ; k � N) being a set of k orthonormal vectors (Bi �Bj =
�ij). With this choice the features are weakly correlated. In the thermodynamic
limit considered below, any set of k � N randomly selected normalized vectors
Bi satis�es the orthogonality constraint with probability one. Depending on
the function � and the vectors Bi, the mapping (1) generates di�erent families
of SVMs. If k = 0, we have the Maximal Stability Perceptron (MSP), or linear
SVM, whose properties have been extensively studied (see [1] and references
therein). If k = N , choosing �(�) = � and the input space generators for the
Bi (Bi = ei with e1 = (1; 0; � � � ; 0), e2 = (0; 1; � � � ; 0), etc.), corresponds to the
quadratic SVM. Another choice of theoretical interest is �(�) = sign(�).

The output of the SVM to a pattern x is � = sign [w � �(x)], where w =
fw0;w1; � � � ;wkg is a (1+ k)N -dimensional vector. Hereafter we consider nor-
malized weights, w �w = (1 + k)N without any lack of generality, but we do
not impose any constraint to the normalization of each N -dimensional vector
wi. We restrict to solutions without threshold.

The aim of learning is to determine a vector w such that �� = y� or,
equivalently, such that

� =
y� w � �(x�)p

(1 + k)N
� 0 8�: (2)

Notice that j�j is the distance of pattern � to the hyperplane normal to w.
Any vector w that meets conditions (2) separates linearly in feature-space
the images of training patterns with output +1 from those with output �1.
As we consider solutions without thresholds, the separating hyperplane passes
through the origin. Due to the non-linearity of �, the separation is not linear
in input space. The distance of the training patterns closest to the hyperplane
de�nes the hyperplane's stability or margin �. The Optimal Hyperplane [2] w�

has maximal stability, �max:

�max(w
�) = max

w

inf
�
� = max

w

�: (3)

i.e. it is the MSP in feature-space. w
� is a linear combination of the pat-

terns at distance �max [2, 3], which are the Support Vectors (SV): w� =P
�2SV a�y��(x�). The a� are positive parameters to be determined by the

learning algorithm, which has also to �nd out which patterns are the SVs,
whose number Psv is unknown. In [2], the optimal hyperplane is de�ned as the
vector ew that minimizes L(ew) = ew � ew under the conditions:

y�(ew ��(x�) + b) � 1 8� = 1; � � � ; P (4)

It is easy to show that w� = ewp(1 + k)N=L(ew).
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3. Replica calculation

We studied the generic properties of the SVMs de�ned by the mapping (1),
through the by now standard replica approach [4]. The results are obtained in
the thermodynamic limit, in which the input space dimension and the number
of training patterns go to in�nity (N ! +1, P ! +1) keeping the reduced

number of patterns � � P=N constant. In this limit, the SVM properties
become independent of the particular training set realization, a fact known as
self-averaging. The appropriate cost function, whose minimum is the solution
to the learning problem, is

E(w;L�; �) =
PX

�=1

�(�� �) (5)

where � is the Heaviside step function and L� represents the training set. (5)
counts the number of training patterns � that have � < � in feature-space.
The largest value of � that satis�es E(w�;L�; �) = 0 is the SVM's maximal
margin. The weight vector w� de�nes the SVM. Its generic properties are
determined by the zero temperature free energy

f(k; �; �) = lim
N!+1

lim
�!+1

� 1

�N
hlnZi; (6)

where Z =
R
dP (w) exp [��E(w;L�; �)] is the partition function, dP (w) =

dw � [(1 + k)N �w �w] and � is the inverse temperature. In Eq.(6), the
bracket stands for the average over all the possible training sets L� for a
given �. The free energy (6) is calculated using the replica trick hlnZi =
limn!0 lnhZni=n.

We �rst consider the case of learning a random input-output relation, in
which the classes y of the training patterns are randomly selected to be +1 or
�1 with the same probability 1=2. In the following, we describe the main steps
of the calculation. The reader not interested in these details may jump to the
next paragraph, where the main results are presented and discussed. If f = 0
for � � 0, the training set is LS with probability one. The largest value of � for
which f = 0 is the typical value of �max(k; �). In this problem, the pertinent
order parameters are

vai =
w
a
i �wa

i

N
; (7)

cabi = lim
�!+1

�
(wa

i �w
b
i )
2

2N
(a 6= b); (8)

where wa and w
b are the weight vectors of replicas a and b respectively, and

i = 0; � � � ; k. The cross-overlaps wa
i �wb

j=N (i 6= j) may be neglected, as they

are of order 1=
p
N due to the fact that features i and j are uncorrelated [5].

These order parameters generalize to k 6= 0 the ones introduced by Gardner
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and Derrida [6, 7] in their seminal papers on the single perceptron (k = 0) with
normalized weights wa

0 (w
a
0 �wa

0 = N). The parameters cabi are a generalization
of Gardner-Derrida's parameter xab = lim�!+1 �(1�qab), as (wa

0�wb
0)
2=2N =

1�w
a
0 �wb

0=N = 1� qab in their notations. As we do not impose the norms of
the wa

i but only the global norm w �w = (1 + k)N , the parameters vai , absent
in their formulation, appear naturally here. We assume replica symmetry, i.e.
vai = vi and cabi = ci for all a; b. Then, the order parameters have a quite
intuitive meaning: the norm of the wi do not depend on the replica index, and
the ci reect how fast the uctuations of wi around the minimum of the cost
function decrease as the temperature vanishes (� ! +1). In the case of a
degenerate continuum of minima, these uctuations decrease very slowly, and
the ci diverge. This is the case for 0 � � � �max. The general properties of
the SVMs are invariant under permutations of the Bi. This symmetry allows
us to take vi = v1 and ci = c1 for i � 1. Introducing ~v1 = v1=v0, where v0 is
determined by the normalization condition w �w=N = 1+ k = v0+ k~v1v0, and
~c1 = c1=c0, the free energy writes f(k; �; �) = max~v1;~c1;c0 g(k; �; �; ~v1; ~c1; c0).
The maximization of g determine the values of the order parameters (7), which
in turn give the properties of the optimal hyperplane.

The capacity �c(k) is the largest reduced number of patterns that the ma-
chine with k features can learn without errors. At � = �c(k), the maxi-
mal margin vanishes, i.e. �max(k; �c(k)) = 0. In this case, the extrema of
g(k; �; 0; ~v1; ~c1; c0) correspond to c0(�; �) = +1 and ~v1 = ~c1 for all the possible
odd functions �. Notice that our assumption of replica symmetry is consistent,
as the replica symmetric solution is stable until c0(�; �) = +1, or equivalently
for 0 � � � �max(k; �), which is the region where error-free learning is possi-
ble. Our result means that the capacity is �c = 2(1 + k), independently of the
particular choice of �, provided that the new features are uncorrelated. This
generalizes to more general feature-spaces the result obtained for quadratic
separating surfaces by Cover [8], who found through a geometrical approach
that �c = 2N . Quadratic classi�ers correspond to SVMs with �(�) = � and
k = N .

Contrary to the capacity, the typical maximal margin depends on the par-
ticular mapping � implemented by the SVM. It turns out that in the case
�(�) = sign(�), the maximal stability �max(k; �) scales trivially with k. The
order parameters are ~v1 = ~c1 = 1 so that g(k; �; �; c0) = (1 + k)g(0; �=(1 +
k); �; c0), where the RHS corresponds to a single perceptron of stability �
in input space. The maximal margin for these mappings is thus given by
�max(k; �) = �max(0; �=(1 + k)). From [1] we deduce that for � � 1 + k,
�max(k; �) �

p
(1 + k)=�, and for � ! ��c , �max(k; �) �

p
�=8 (�c � �)=�c.

Although we were unable to �nd a closed form of the maximal margin for the
mapping �(�) = �, the property that �max(k; �) � �max(0; �=k) is veri�ed for
k � max(�; 1). More generally, as �max(0; �) is a concave decreasing function
of � [7], it is possible to increase the margin by including new features, i.e., by
increasing k.

The typical fraction of training patterns that are SVs, �sv(k; �) = Psv=P ,
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is a quantity of great importance, since Vapnik [2] showed that it is an upper
bound to the generalization error �g, the probability of making a mistake in the
classi�cation of a new pattern (see Theorem 5.2 p.135 in [2]). We determine
the distribution of distances (2) of the patterns to the optimal hyperplane,
�(k; �; ), which has a delta peak at the position of the SVs, whose weight is
exactly �sv. In fact, �(k; �; ) follows from the MSP's distribution [1], �(0; �; ).
The dependence on the mapping �(�) is implicit in �max(k; �). We obtain

�(k; �; ) =
exp

��2=2�p
2�

� [ � �max] + �sv(k; �) � [ � �max] (9)

where �sv(k; �) is such that �(k; �; ) integrates to one. For � � 1 + k,
�sv(k; �) � 1 �p�=2�(1 + k) exp(�(1 + k)=2�), meaning that in the limit
of very small � almost all the training patterns are SVs. �sv(k; �) decreases
with increasing �. For �! ��c , �sv(k; �) ! 1=2, i.e. when the reduced train-
ing set size gets close to the capacity, one half of the training patterns are SVs.
Since �c = 2(1+k), in this limit the number of SVs is equal to the feature-space
dimension. In the case of learning a random task, the fact that �sv(k; �) > 1=2
is consistent with Vapnik's bound, since the generalization is impossible and
�g = 1=2.

In the following, we consider that the learned task is LS in input space.
Despite the fact that this task is too simple to be representative of realistic
applications, its study provides insight on the properties of SVMs in a case
where the number of SV should be meaningful for predicting the generalization
error. The calculation of the free energy (6) in this case is somewhat more
involved than in the random task, as it includes a new order parameter besides
those in equations (7) and (8). We do not detail here the calculations, but
present the main results. For � � 1 + k, the behavior of �max(k; �) and
�sv(k; �) are the same as for random outputs. This is not surprising, since,
at small �, the SVM does not have enough information to realize that the
task is LS. More interesting is the behavior for � � 1 + k. In this case,
�max(k; �) � 0:226

p
2�(1 + k)=�, �sv(k; �) � 0:952(1 + k)=�, and �g(k; �)

vanishes as 0:5005 (1 + k)=�. Thus, the typical number of SVs is only slightly
smaller than the feature-space dimension. It is interesting to notice that the
bound given by Vapnik for the generalization error is in good agreement with
our results. As a linear SVM learning a LS task has �g(0; �) � 0:5005=� [1], we
see that the over�tting arising when the task is learnt by too complex machines
(k 6= 0) produces an increase in the generalization error and in the number of
SVs which is proportional to the number of superuous parameters. In other
words, the SVM is unable to �nd the solution without quadratic components,
i.e. with wi = 0 for i 6= 0. This is an entropic e�ect and is expected to arise
whenever the mapping de�ning the feature space is more complex than the task
to be learned.
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4. Conclusions

We have presented the typical properties of a general class of Support Vec-
tor Machines. The �rst result obtained for this type of SVMs is the capacity.
This capacity, strongly related to the VC dimension, is shown to be propor-
tional to the feature-space dimension, generalizing Cover's well known result
for quadratic feature-spaces. Our second result shows that the SV-margin and
the number of Support Vectors both increase with the feature space dimension.
This behaviour is valid in both cases considered: learning a random task and a
task that is LS in the input space. The fact that the SV-margin increases with
the feature space dimension is not surprising. Moreover, it can be shown that
it increases the robustness of the solution with respect to input noise.

In real applications, it is commonly observed that the number of SVs satu-
rates when the size of the feature space increases. This is di�erent from what
we �nd for a random task and a LS task. One reason for this desagreement
may come from the unrealistic distribution of training patterns considered.
In the particular case of the Linearly Separable task, the gaussian distribution
considered in this calculation has a large probability that points lie on the sepa-
rating surface. In realistic applications, we expect the points to be distributed
around prototypes, each prototype corresponding to a given class, and with
small overlaps between the distributions around di�erent prototypes.
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