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This new algorithm combines the conceptual simplicity of a least-mean-square
algorithm for linear regression, but exhibits the power of a universal non-linear
function approximator. The method is based on a generalisation of the Widrow-
Hoff LMS rule using Mercer kernels. Simple examples in curve fitting and non-
linear systems identification are solved by the method.

1. Introduction

By expanding a function in series form it can be represented to an arbitrary degree of
accuracy by taking enough terms. It is therefore possible, in principle, to conduct a
linear regression on a new set of variables, transformed by a fixed mapping. This
leads to a large computational burden and to the need for an infeasible amount of data
from which the coefficients must be estimated and is not generally practical for
function approximation. The algorithm studied in [1] is a linear Perceptron, which is
computed implicitly in a space of infinite-dimension (the linearisation space) using
potential (kernel) functions. These have been further exploited in the Support Vector
Machine (SVM) [2], principal component analysis [3], linear programming machines
[4] and clustering [5]. The kernel-Adatron [4,6,7], provides a fast, simple, and robust
alternative to SVM classifiers providing arbitrary, large-margin discriminant
functions iteratively, so avoiding the intensive QP computations of the SVM.
We now use kernels to develop a non-linear version of the Adaline [8], yielding a
general, non-linear adaptive mapping device via an algorithm with well-documented
properties. Selecting an appropriate kernel and its parameter specifies the mapping to
the linearisation space, which can be done empirically, via cross validation.

2. The Adaline

The Adaline [8] has the form:
f w x b= +, (1)

where x is an n-vector of input data, w a set of n weights, b a bias and

w x w xi ii
, = ∑  denotes the scalar-product. The Adaline is a member of the general

class known as Perceptrons. Its objective is: given some measured data, y i Li = 1� ,
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adjust the weights, w, so that the mean-square error (MSE) between the output, f, and
the measured data, y, is minimised. Replacing the true gradient by its instantaneous
estimate in the direct gradient descent solution leads to the LMS adaptation rule [8]:
w w y f x← + −η1 6 , b b y f← + −η( ) (2)

where η  is the adaptation rate. Observe from (2) that the weights can equally be

represented as a weighted sum of the data samples, i.e. w xi i
i

i L

=
=

=

∑α
1

 and we re-write

the Adaline in its data dependent (DD) form [4,9]:

f x x b x x bp i i pi

i L

i i pi

i L
= + = +

=

=

=

=∑ ∑α α, ,
1 1

(3)

For any DD Perceptron such as (3), the equivalent update rules for the scalar
multipliers, α i , and the bias, b, are given by:

α α ηi i ie← + , b b ei← + η (4)

where e y fi i i= −  [4]. That this must be so is clear from the fact: w w e xi i← + η

= + ← +
=

=∑ α η α α ηj jj

j L

i i i i ix e x e
1

iff , hence after one pass through the data,

w xi ii

i L
=

=

=∑ α
1

. The formulations of (3) and (4), and of (1) and (2) represent the

same Perceptron, so the known properties of the LMS rule apply directly. In the DD
formulation the update consists only of adding values to the α i , and of computing

inner products of training patterns. This is central to the sequel.

2.1 A kernel Adaline for function approximation

If a fixed mapping of the input data z xp p= ϕ3 8 , were known a priori, where ϕ .1 6
is rich enough to capture the underlying form of f, the data could be transformed and
fitted by a linear combination of the zs [1]. Through the use of Mercer kernels it is
possible to perform the mapping implicitly. Mercer kernels represent inner-products in
some Hilbert space [10] and thus the mapping of two samples into a high-dimensional

linearisation space, Z: x x x x z z z Z uu v u v u v u, , ,1 6 1 6 1 62 7 1 6� ϕ ϕ = ∈ ∀ , and the

calculation of inner-products there, k x x x x z zu v u v u v, , ,1 6 1 6 1 6= =ϕ ϕ . Any function

satisfying Mercer’s conditions may be used, such as the Gaussian radial basis

function, k x x x xrbf u v u v, exp /1 6 4 9= − − 2 22σ , or the polynomial kernel,

k x x x xpol u v u v

d
, ,1 6 2 7= +1 . Each kernel has an associated parameter providing

a design degree of freedom or “smoothing”.
The scalar product of (3) may now be replaced with an inner product in Z, avoiding
explicit expansion. The vector, w, now resides in Z and is not, therefore, accessible for
update but in the DD form the multipliers, α i , are accessible so the scalar product in
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(3) is replaced by a kernel and the α i updated as per (4). Now the DD, non-linear

Adaline is given by: f x x x bi p p ip

p L
( ) ( ), ( )= < > +

=

=∑ α φ φ
1

= +
=

=∑ α p p ip

p L
k x x b( , )

1
. The “representer” theorem guarantees that for any

function, f x k x x bi p p ip

p L
( ) ( , )= +

=

=∑ α
1

 =< > +w x bi, ( )ϕ , there exists a

function in the kernel Hilbert space [11,12]. To allow for an affine solution in Z, the
explicit bias, b, is maintained [7] so that augmentation of data vectors can be

performed implicitly in Z. i.e. Augment z  thus: zt t

1 , and noting that b i
i

i L

=
=

=

∑α
1

 we

have: f x k x x bi pp

p L

p i( ) ( , )= +
=

=∑ α
1

 = +
=

=∑ α pp

p L

p ik x x
1

1( , )3 8
=

=

=∑ α pp

p L

p ik x x
1 1( , ) and since k1  is positive semi-definite, the properties of the

algorithm with augmented linearisation-space vectors follow from those given above
[7,9]. Evidently, the update algorithm follows from the linear Adaline simply by
replacing x with z. A pseudocode algorithm is given below.

Kernel-Adaline Learning

1. Chooseα i i L b= = =0 1 0, ,�  and η
2. WHILE (early) stopping criterion not met
3.    FOR i L= 1�
              choose an input x i Li ∈[ , ]1

              calculate kernel-Adaline error e y k x x bi i p p ip

p L= − +
=

=∑ α ,3 81

              update corresponding multiplier and bias by the rule:
              α α η ηi i i ie b b e← + ← +;
4.    END FOR
5. END WHILE

Monitoring training and out-of-sample (OOS) performance allows early stopping at
the minimum point of the OOS cost (e.g. MSE, MAE) to regularise the solution. It
can be shown that after q iterations using a learning rate, η , the vector of multipliers,

α , lies in a hyper-rectangle of size q × η  in the dual space of the parameters α .

Since the DD structure is fixed, the weight vector, w, will also lie in a hyper-
rectangle. Early stopping, therefore, implies weight decay regularisation both in the
convex dual space of multipliers, and in the linearisation space implied by the kernel
function (where weight vector, w, resides). The linearity of the problem in Z ensures
that the well-known convergence properties of the LMS algorithm continue to apply
to the kernel-Adaline. Our approach can also operate with Vapnik’s ε -insensitive
zone by ensuring that only those multipliers whose current errors exceed ε > 0 are
updated every iteration, increasing solution sparsity but possibly biasing the result. To
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expedite computation cache matrices can be used. The extension to multi-output
problems is obvious.

3. Computer experiments

Static curve fitting: Here we fit the sinc function, uniformly sampled on the interval
(-10, 10) with added noise ~ ( , . )N 0 0 04 . Identifying a minimum in the OOS MSE and
reverting to that point performs early stopping regularisation. A Gaussian kernel is
used with three values of σ  and η =.01. A near zero value of training MSE for
σ = 0 2.  indicates that the data are over-fitted. This is seen in figure 1 (dotted line),
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Figure 1: Demonstration of over-, correctly- and under-fitting the sinc function.

where the OOS behaviour is relatively poor (175 iterations). Widening the kernel
( )σ = 2 improves this (dashed line) giving a good fit (35 iterations). Further widening
the kernel ( )σ = 5  might be expected to show severe under-fitting (chained line).
Indeed, the learning task requires much iteration but early stopping at 5600 yields a
tolerable fit. For σ < 0 2.  gross over-fitting occurs while for σ > 5 excessive
training is needed. There is, nonetheless, substantial latitude in the selection of the
smoothing parameter provided that the solution is properly regularised.
Non-linear filtering : We can now use the kernel-Adaline to generalise the optimal
linear filtering theory for non-linear systems identification, time series analysis and
prediction, active noise cancellation, channel equalisation, signal deconvolution, delay
estimation and inverse-based control. We use our new optimal filtering theory to
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identify a non-linear, moving average system: y n x n x n n( ) . ( ) ( ) ( )= + − +0 5 1 3 ε , with

ε ~ ( , )N 0 4  and x N~ ( , )0 1  with independent increments. Early stopping is used as
appropriate. Figure 2 compares the true and predicted OOS values for two kernel
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Figure 2: OOS behaviour for the non-linear moving average system for two kernel types. NB
the false origin on the vertical axis for clarity.

choices, with unit time delay. Note that the predictive accuracy is high in both cases,
despite the poor SNR of the training sample (containing 50 points). In [13] further
experiments are described, including identification of an auto-regressive system.

4. Conclusions

The kernel-Adaline is a sequential and numerically robust algorithm of the potential
function Perceptron type that uses kernels for high (possibly infinite) order
expansions and applies the LMS rule in the high-dimensional linearisation space. A
non-linear version of the linear Adaline has been developed whose convergence
properties follow directly from analysis of the LMS algorithm as a consequence of
operating in the linearisation space. The use of an ε -insensitive zone is a trivial
extension of the algorithm.
Initial experiments show that, while the kernel-Adaline is subject to the usual (as yet
unsolved) problems of model selection, this can be reduced to the choice of a kernel,
its parameter and, for filtering, the filter length [13]. The required computations are
trivial and are not troubled by local phenomena owing to the convexity of the
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problem. They can be implemented efficiently by means of a cache matrix. It appears,
therefore, that this procedure has much potential in the field of non-linear signal
processing and function approximation.
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